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ABSTRACT Combining the effects of transvascular and interstitial fluid movement with the structural 
mechanics of a tissue is important to accurately describe processes such as nutrient transport in a tumor 
cell. Further, hyperthermia can have a role; for example, temperature variations can be induced in order 
to treat some kinds of tumors, like liver tumor. Recently, the study of the effects of hyperthermia on 
fluid flow and mass transport in biological systems by considering the fluid-structure interaction has 
gained researchers attention. In the present paper, fluid flow in a tumor mass is analyzed at a 
macroscopic scale by considering the effects of both solid tissue deformation and hyperthermia. 
Governing equations are averaged over a Representative Elementary Volume (REV) of the living 
tissue, and written by means of the thermo-poroelasticity theory. Darcy’s law is used to describe fluid 
flow through the interstitial space, while transvascular transport is described with a generalized 
Starling’s law. The effects of hyperthermia on the living tissue are included with a source term in the 
tissue momentum equation that considers the thermal expansion. Governing equations with the 
appropriate boundary conditions are solved with the finite element commercial code COMSOL 
Multiphysics in steady state regime. The numerical model is validated with analytical results from 
Netti et al. [1997] for an isothermal case. Results are presented in terms of pressure, velocity and 
temperature fields, for various thermal loads and the effect of hyperthermia on various physical 
parameters is analyzed. 
 

NOMENCLATURE 
 

 

Latin symbols 
Cp Heat capacity at constant pressure (J/kg·K) 
e* Volumetric strain 
k Thermal conductivity (W/m·K) 
Kh Average tissue hydraulic conductivity (m2/Pa·s) 
L Average hydraulic conductivity coefficient (m/Pa·s) 
p Interstitial fluid pressure (Pa) 
pv Vascular pressure (Pa) 
Qgen Hyperthermia heat source (W/m3) 
Qmet Metabolic heat source (W/m3) 
r Radial coordinate (m) 
r* Dimensionless radial coordinate 
R Cell radius (m) 
S/V Surface to volume ratio (1/m) 



T Temperature (K) 
u Velocity vector (m/s) 
u,v Velocity components (m/s) 
x Solid displacement vector (m) 
  
Greek symbols 
α Thermal expansion coefficient (1/K) 
μ Lamé parameter (Pa) 
λ Lamé parameter (Pa) 
ρ Density (kg/m3) 
φ Porosity 

 
Subscript 
in Initial 
ref Reference value 
  
Superscript 
* Scaled 
 

 
INTRODUCTION 

 
A biological tissue consists of a microvascular bed with blood flow through many vessels. As such 
it is quite natural to treat the living tissue as a porous medium [e.g., Khaled and Vafai 2003; 
Khanafer and Vafai 2006; Zhang 2009]. Thus, then porous media theory can be utilized for bioheat 
transfer analysis, in which fewer assumptions are needed as compared to the established bioheat 
transfer models [e.g., Khaled and Vafai 2003; Khanafer and Vafai 2006; Khanafer and Vafai 2009]. 
Hyperthermia occurs when the body produces or absorbs more heat than it can dissipate. This is 
usually due to excessive exposure to heat. Hyperthermia can also be produced artificially by 
medical devices and it may be used as a therapeutic method to bring about an artificial rise in 
temperature in certain types of cancer tissues [e.g., Jain 1987a], such as skin cancer [e.g., Wang et 
al. 2007], or vascular stent delivery [e.g., Stoeckel et al. 2004]. Up to now, various heating methods 
allowing hyperthermia to be produced, such as resistive heating with external electrodes [e.g., Lv et 
al. 2005; Tsuda and Kuroda 1996], microwaves [e.g., Zhu et al. 1998; Martin et al. 1992], 
ultrasound [e.g., Marmor et al. 1979] and lasers [e.g., Kim et al. 1996], have been used. The heat 
has to be applied directly to the tumor in order to prevent the damage to healthy tissue surrounding 
the tumor. The knowledge of the entire temperature field in the treatment region allows us to 
control the tumor heating. Understanding thermal transport and temperature distribution within 
biological organs is important for therapeutic aspects related to hyperthermia treatments [e.g., 
Keangin and Rattanadecho 2013] and cryogenics [e.g., Rabin and Plitz 2005; Rios and Rabin 2006].  
Majchrzak et al. [2008] carried out the modelling of biological tissue heating by external 
electromagnetic field. To analyse the problem a simplified 2D mathematical model based on the 
Pennes equation supplemented with an equation determining the electric field produced by the 
external electrodes was built; at the same time, different values of electric field parameters were 
taken into account. The model was subjected to the numerical investigations using the boundary 
element method. It was underlined that the temperature differences and temperature gradients in the 
domain considered were rather small. Varon et al. [2015] carried out a numerical study under 
uncertainties of the treatment of cancer based on hyperthermia induced by radiofrequency 
electromagnetic waves, where the tumor is supposed to be loaded with nanoparticles. The focus of 
the paper is on the solution of the inverse problem dealing with the estimation of state variables, 
like the temperature distribution in the tissues.  



Combining the effects of transvascular and interstitial fluid movement with the structural mechanics of 
a tissue is important to accurately describe processes such as nutrient transport in a tumor cell and 
hyperthermia can have an important role. 
Recently, the study of the effects of hyperthermia on fluid flow and mass transport in biological 
systems by considering the fluid-structure interaction has gained researchers attention. Chung and 
Vafai [2014] analyzed LDL accumulation in an arterial wall by considering the thermal expansion of 
the wall caused by external and internal thermal loads. In their model, Ludwig-Soret and Dufour 
effects were also taken into account. The authors analyzed the effect of thermal expansion on 
changing the behavior of flow, mass transport, and elastic structure while incorporating the 
variations in the effective LDL diffusivity and consumption rate, as well as other dominating 
parameters. AlAmiri et al. [2014] analyzed pulsatile turbulent flow and heat loads effects on tumor 
tissues under hyperthermia. 
To capture the experimental behavior of tumors in the computational studies, appropriate 
constitutive models have to be considered [e.g., Unnikrishnan et al. 2010]. The inherent spatial 
heterogeneity, hierarchical tissue structure, and active nature of the tumor provide significant 
hurdles in the development of an accurate constitutive model of tumor. These difficulties lead to the 
development of approximate models for specific events of tumor tissue mechanics. In the 
computational studies, tumors were considered as, linear/nonlinear, elastic/viscoelastic, multiphase, 
and poroelastic materials.  
In the present work, fluid flow in a tumor mass is analyzed at a macroscopic scale by considering the 
effects of both solid tissue deformation and hyperthermia. Governing equations are averaged over a 
Representative Elementary Volume (REV) of the living tissue, and written by means of the thermo-
poroelasticity theory. Darcy’s law is used to describe fluid flow through the interstitial space, while 
transvascular transport is described with a generalized Starling’s law. The effects of hyperthermia on 
the living tissue are included with a source term in the tissue momentum equation that considers the 
thermal expansion. Governing equations with the appropriate boundary conditions are solved with the 
finite element commercial code COMSOL Multiphysics in steady state regime, and the numerical 
model is validated with analytical results from Netti et al. [1997] for an isothermal case, in which 
poroelastic theory was employed to describe the time dependent behavior of interstitial fluid 
pressure in a deformable porous tumor. Results are presented in terms of pressure, velocity and 
temperature fields, for various thermal loads and the effect of hyperthermia on various physical 
parameters is analyzed. This contribution can be helpful to analyse phenomena such as interstitial fluid 
movement when hyperthermia occurs in a living tissue. 
 

MATHEMATICAL MODEL 
  
Volume-averaged governing equations In order to solve the physical problem, the whole tumor 
tissue is modeled as a spherical macroscopic porous media. The whole porous media is made up by 
cellular, vascular and interstitial-lymphatic spaces [e.g. Fung 1990]. The vascular space is only a small 
percentage of the total volume. Two phases of the porous media are identified: the first is formed by 
the interstitial phase, in which the interstitial flow with water and macromolecules passes through at a 
certain velocity, while the second phase is made up by the cellular volumes. Following porous media 
theory, governing equations are written by considering the variables to be averaged over a 
Representative Elementary Volume (REV) [e.g., Vafai 2015]. This REV has linear dimensions that are 
at least one order of magnitude more than the intercapillary distance [e.g., Netti et al. 1997], in order to 
make statistically meaningful the averaging process. 
Governing equations are written by means of the thermoporoelasticity theory, in which thermal effects 
are included together with the mutual coupling between the fluid flow and the porous matrix 
deformation. 
For the fluid flow, mass and momentum equations are written in the following:  
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where φ  is the porosity, u the fluid velocity vector, L the average hydraulic conductivity coefficient 
of the capillary wall, S/V the surface to volume ratio, pv the vascular pressure, p the interstitial fluid 
pressure and Kh the average tissue hydraulic conductivity. The source term on the right in the mass 
equation is referred to the Starling equation without considering the lymphatic drainage. It represents 
the effect of hydrostatic pressure on the interstitial flow movement. Equation (2) is also known as the 
Darcy’s law. It can be derived from the momentum equation in steady-state under the hypothesis of 
negligible macro-inertial and viscous (Brinkman) effects, and micro-inertial (Forchheimer) effects. 
Macroscopic inertial effects can be significant only for lengths over than Khφ|u|ρ that rarely occur for 
significant applications [e.g., Vafai and Tien 1981 and Khakpour and Vafai 2008]. Macroscopic 
viscous effects can be assumed to be negligible for low permeability, since the pressure gradient is 
balanced by the micro-inertial term instead of the viscous term [Brinkman 1949]. Such effects become 
important only in regions near the boundaries, with thicknesses of the order of the square root of the 
permeability (Brinkman screening distance). In this study, this thickness is of the order of about 10-14 
m that is pretty small when compared to the computational domain dimensions. Further, Nield and 
Bejan [2006] reported that Brinkman effects are negligible in most of the practical applications. Micro-
inertial effects, also known as Forccheimer effects, can be neglected since they occur only for 
relatively high Reynolds numbers. Indeed, Nield and Bejan [2006] reported that the transition from 
Darcy’s law to Darcy-Forchheimer’s law occurs for about 102 square root permeability-based 
Reynolds number. In the present study, this number is fairly lower than transition values (velocities are 
of the order of micrometers, while Brinkman screening distance is of the order of about 10-14 m), so 
Forchheimer effects can be neglected. Finally, it has to be observed that the reliability of the 
aforementioned equations has been demonstrated for filtration problems through arterial walls by 
founding good agreement with experimental results [e.g., Yang and Vafai 2008, Wang and Vafai 2013 
and Iasiello et al. 2016].  
For the solid matrix, momentum equation is reported in the following, under the hypothesis of a linear 
elastic material: 
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where µ and λ are Lamé parameters, x the solid displacement vector, α the thermal expansion 
coefficient and T the temperature. This equation is written from the equilibrium condition, considering 
a source term ∇ p that couples the effects of fluid flow on the solid matrix [e.g., Netti et al. 1997], and 
a temperature term that considers the thermal effects on the solid matrix. Temperature is always 
calculated here with reference to the temperature Tref  of 37 °C that is typical of the human body. It is 
noticed that the temperature gradients, that change the displacement field, affect the flow field since 
thermo physical properties are changing. 
Finally, energy equation is written under the assumption of Local Thermal Equilibrium (LTE) between 
the two phases [e.g., Amiri and Vafai 1994; Alazmi and Vafai 2001]. 
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where ρ is the density, Cp the heat capacity at constant pressure, k the thermal conductivity, Qmet the 
metabolic heat source and Qgen the heat generated by hyperthermia. The second term on the right 
side represents the heat source due to metabolic reactions [e.g., Rabin and Shitzer 1998; Lienhard 
2005]; its value is Qmet = 33,800 W/m3. The third one is a term referred to the heat generation 



induced by hyperthermia. Its value is a function of the electric field, and it can be obtained from 
Maxwell equations [e.g., Keangin and Rattanadecho 2013]. In this paper, only a sensitivity analysis 
with mean values of heat generation is employed, in order to simplify the model without solving the 
electrical field problem. 
 
Boundary conditions Even if a one-dimensional coordinate system is sufficient to solve the problem, 
a two-dimensional cylindrical coordinate system is herein employed by studying a half circle with 
symmetry axis. This happens in order to easily manipulate the finite element code here employed. At 
the symmetry axis, symmetry conditions are employed for all the equations. At the boundaries of the 
computational domain, the pressure is set equal to 0 mmHg with no viscous stress; an antisymmetry 
boundary condition with tangential displacement equal to zero is set for the displacement and a 
Dirichlet boundary condition of 37 °C is employed for the energy equation. The first two boundary 
conditions are used since there are no contact forces at the boundaries, while the third in order to 
simulate that the boundaries of the tumor cells are as far as to be reached from the thermal dose. 
Reference is made to the computational domain, shown in Fig.1. 
 
Porous media properties Governing equations (1) – (4) are solved only if thermo physical properties 
are known. In the flow field equations, it is noticed that both porosity and hydraulic conductivity [e.g., 
Lai and Mow 1980] are taken as a function of the displacement field: 
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Figure 1 – Computational domain. 
 



 
 
where e* is the volumetric strain and the subscript in stands for porosity and hydraulic conductivity 
without displacement fields effects, i.e. φin = 0.20 [e.g., Jain 1987b] and Kh,in = 4.13·10-8 
cm2/mmHg·s [e.g., Swabb et al. 1974]. In the hydraulic conductivity equation, β = 2 [e.g., Støverud 
et al. 2012]. The employed porous media properties are summarized in Table 1. 
 
Numerical solution Governing equations are solved by using the finite element code COMSOL 
Multiphysics. A boundary-layer triangular mesh is used, with about 100,000 elements. Grid 
convergence has been verified with Richardson extrapolation on both velocity and pressure field 
averaged values, with a criterion of less than 1%. A RMS convergence criterion of 10-4 is used without 
any significant changes in the solution. 
 
 

Table 1 
Porous media properties 

 
Property Value Reference 

φin 0.20 Jain [1987b] 
Kh,in 4.13·10-8 (cm2/mmHg·s) Swabb et al. [1974] 

L 3.6·10-7(cm/mmHg·s) Baxter and Jain [1989] 
S/V 200 (1/cm) Hilmas and Gilette [1974] 
λ 684 (mmHg) Nicholson and Phillips [1981] 
µ 15.2 (mmHg) Nicholson and Phillips [1981] 
α 6.376·10-5(1/K) Rabin and Plitz [2005], Rios and Rabin [2006] 
ρ 1000 (kg/m3) Duck [1990], Kolios et al. [1995] 
Cp 4180 (kg/m3) Duck [1990], Kolios et al. [1995] 
k 0.6 (W/m·K) Duck [1990], Kolios et al. [1995] 

 
 
 

RESULTS 
 
Comparisons with the analytical solution from Netti et al. [1997] are presented in the following.  
In Fig. 2, pressure and volumetric strain along the dimensionless radial coordinate r* = r/R are 
presented for two values of vascular pressure, pv=3 mmHg and pv=10 mmHg. It is reminded that the 
volumetric strain, for Cartesian systems, is equal to the divergence of the displacement field. It is 
shown that for both the pressure and the volumetric strain the values are uniform in the first part of the 
domain, with a rapid decrease in the last part. This means that the fluid tends to move from the core of 
the domain to the external parts. A good agreement with the analytical solution is exibithed. 
In Fig. 3, the velocity vs. the dimensionless coordinate is reported for pv=3 mmHg and pv=10 mmHg. It 
is shown that the velocity increases around the domain boundaries, since the pressure difference, that is 
the driving force, increases.  
 
 



 
 
 
Figure 2 – Comparisons with analytical results from Netti et al. [1997] for different values of vascular 

pressure pv: a) pressure and b) volumetric strain. 
 
 
 
 

 
 

Figure 3 – Velocity fields for different values of vascular pressure pv. 
 

 
Temperature field for Qgen = 1·106 W/m3 and temperature profiles for different heat loads are reported 
in Fig. 4a and Fig.4b, respectively. It is shown that the maximum temperature value occurs at the 
center point of the spherical domain, with a rapid decrease along the radial coordinate, reaching the 
value of 37 °C on the periphery of the domain, Fig. 4a. In Fig. 4b, varying the heat load, temperature 
can reach about 65 °C, that is typical of induced hyperthermia applications The temperature rapid 
decrease along the radius is more marked when the heat induced by hyperthermia increases (Qgen).  
The volumetric strain for different heat loads is presented in Fig. 5. The isothermal case is the one 
already presented in the validation part of the paper. It is shown that the more the heat load, the higher 
is the volumetric strain. This because, with references to Fig. 4b, the strain caused by the local 
temperature difference with the reference temperature becomes more pronounced.  
 
 
 



 
 

 
Figure 4 – a) Temperature field for Qgen= 1·106 W/m3and b) temperature profiles for different heat 

loads. 
 
 

 
 

Figure 5 – Hyperthermia effects on volumetric strain e*. 
 

 
It has already discussed that volumetric strain induced by hyperthermia causes the porous media 
properties to be different, affecting the flow field. The porosity vs. the dimensionless radius is 
presented in Fig. 6a for different heat loads. It is shown that hyperthermia affects the porosity, 
especially for high heat loads. This because of the volumetric strain changes (Eq. 5). In Fig. 6b, the 
porosity scaled with the initial porosity (φ* = φ / φin) is presented, showing that the porosity can be 
enhanced of slightly less than about a 1.10 factor under hyperthermia conditions.  
In Fig. 7a, the hydraulic conductivity vs. the dimensionless radius is presented for different heat loads. 
With reference to the isothermal case, the hydraulic conductivity is uniform in most of the 
computational domain. As for the porosity, it is shown that hydraulic conductivity is affected by 
hyperthermia. In particular, the heat-induced volumetric strains enhance it, making the flow to pass 
more easily through the pores (Eq. 5). Again, this is due to the temperature differences, that determine 
an enhance in terms of volumetric strain (Fig. 5). In Fig. 7b, the ratio between the hydraulic 
conductivity and its reference value (Kh* = Kh / Kh,in) is presented. The hyperthermia can cause a very 
slight increase in terms of hydraulic conductivity.  
 
 



 

 
 

Figure 6 – Hyperthermia effects on a) porosity and b) on scaled porosity. 
 
 
 
 

 
 

Figure 7 – Hyperthermia effects on a) hydraulic conductivity and b) scaled hydraulic conductivity. 
 
 
 

The effects of hyperthermia on velocity and pressure fields along the dimensionless radius, caused by 
the changes in terms of porous media properties, are presented in Fig. 8. No substantial changes have 
been found. Similar results have been found in Chung and Vafai [2014] in their study on hyperthermia 
effects on low-density lipoprotein transport through a medium-size arterial wall. It is also noticed that, 
as also reported in their work, the change in terms of porous media properties can affect other physical 
problems such as chemical species transport. 

 
 
 
 



 
 

Figure 8 – Hyperthermia effects on a) velocity and b) pressure. 
 
 
 

CONCLUSIONS 
 
The objective of this preliminary study was to analyze the hyperthermia effects on macroscopic fluid 
transport in tumors, combining the effects of transvascular and interstitial fluid movement with the 
structural mechanics of the tissue. The fluid flow was analyzed at a macroscopic scale. Governing 
equations were averaged over a Representative Elementary Volume (REV) of the living tissue, and 
written by means of the thermo-poroelasticity theory, in steady state regime. The numerical 
simulations were carried out by means the commercial code COMSOL Multiphysics. Results were 
validated with analytical results from Netti et al. [1997] for an isothermal case. Simulations for various 
hyperthermia loads have been carried out. Such loads enhance porous media properties like porosity 
and permeability with a slightly less than 1.10 and 1.05 factor, respectively. These variations don’t 
modify velocity and pressure fields in the tumor cell. 
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