
Proceedings of CHT-17 
ICHMT International Symposium on Advances in Computational Heat Transfer 

 
May 28-June 1, 2017, Napoli, Italy 

 
CHT-17-xxx 

 

 

ANEW APPROACH FOR THE DIFFUSION OF A SINGLE CLASS OF PARTICLES 

UNDER TWO DISTINCT ENERGY STATES 

 

Luiz Bevilacqua*§
, Maosheng Jiang*, Antonio  Silva Neto

**
, Diego Knupp**, Augusto C. N. R. Galeão*** 

* A. L. Coimbra Institute, Graduate Course in Engineering, Federal University of Rio de Janeiro, Brazil 
**  Polytechnique Institute, State University of Rio de Janeiro, Brazil 

***  
National Laboratory for Scientific Computation, Brazil 

§ 
Correspondence author.  Fax: (0-55-21)3938-8464  Email: bevilacqua@coc.ufrj.br 

 

 

ABSTRACT  The main aim of this paper is to introduce the behavior of a new class of diffusion 

process consisting of a set of particles split into two partitions β and (1−β) corresponding to two 

distinct energy states generating two different fluxes. The set corresponding to the partition β moves 

according to the classical flux potential as function of the diffusion coefficient D and the 

complementary set moves according to a new potential which is function of β and a new coefficient 

R, that we call reactivity coefficient. This new flux is subsidiary to the principal, classical flux, 

meaning that it exists if and only if the main flux is activated. The new governing equation is a 

fourth order PDE. The two streams may be in the same or in opposite directions. Therefore it is 

admissible to have in a given spatial domain, increasing density, rarefaction or stagnation 

depending on the inflow/outflow ratio. This flexibility to model the dynamics of motion allows for 

a better representation of the effect of external fields on the moving particles. This is particularly 

important for temperature sensitive particles scattering on substrata subjected to non-uniform 

temperature fields.  It was clearly shown through the solution of the inverse problem that it is 

expected a relation of the form β=F(R). As a consequence of the introduction of the second 

potential the solutions of a large class of problems show that the concentration tends to grow in 

regions where R is large. Therefore secondary flux plays an important role on the concentration 

distribution. Some examples are presented to illustrate the peculiar evolution processes obtained 

with this theory. 

 

THE BASIC THEORY 

 

Mathematical modeling of natural phenomena has been extensively used particularly due to the 

extraordinary advancements of computational techniques. Mass and energy transfer, dispersion of 

microorganism, motion of invading species are some examples where mathematical and 



computational modeling have been successfully applied. It has been confirmed that diffusion 

models match overall experimental data for a large number of physical-chemical observations. The 

classical model uses the well known diffusion equation that for isolated systems diffusing in 

isotropic media can be written as: 
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This equation is related to a single potential that triggers the flux nΨ xqD1 . We claim that 

this equation is limited to processes where all particles are similar and move in a single energy state 

that decays with increasing time. Consider for instance a set of n particles moving with the total 

translational kinetic energy mpnKK Ttot 22

11
. This energy state that we call E1 is correlated to 

the classical diffusion process. Now after passing an energy field a subset n2 acquires rotational 

energy that is subtracted from the translational energy such that we have now a subset of particles 

n2 moving with same total kinetic energy, except that it is divided into two varieties: 

mpnKT 22
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Since the flux potential is derived from the translational kinetic energy the new process consists of 

two sets, the set (1) composed by n1 particles diffusing according to the potential Ψ1 and n2=n-n1 

particles diffusing according to a new potential Ψ2.  

The purpose of this paper is to propose a method to derive the new potential Ψ2 consistent with the 

conservation principles. A simple way is to consider a string of cells containing some material that 

is distributed to the adjacent cells, left and right, according to a given rule. Consider a string of 

adjacent cells as shown in Figure 1. A fraction β of the contents qn of a given cell “n” is transferred 

in equal proportions to the left and to the right neighboring cells at time t. The remaining fraction 

(1−β) is temporarily retained in the original cell “n”. The process is easily represented by the 

equations (1-a) and (1-b) defining the distribution law at time t and t+Δt.  
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After straightforward but relatively lengthy algebraic operations it is possible to show that  for q(x,t) 

sufficiently smooth a fourth order PDE is obtained: 

n n+1 n-1 

Fig.1. Particles distribution process in a given time interval Δt. The fraction (1−β) is 

temporarily retained at cell n 
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Detailed derivation may be found in Bevilacqua [2013]. This equation shows that the new process is 

composed by two sets of particles corresponding to the fractions β and (1−β) associated respectively 

to two distinct fluxes, the first corresponding to the classical flux Ψ1 and the second to a new law 

Ψ2.  For isotropic media it is easy to see that nΨ
33

2 xqR . For anisotropic media however 

three possible definitions may apply. Besides the previous one where β and R are functions of x it is 

also plausible to admit the following definitions: nΨ xxqR 22*

2  and 

nΨ
22**

2 xxqR with R(x) and β(x). The behavior of the solution depends strongly from 

the definition taken for the secondary flux. It was also shown in Silva [2014] that there is strong 

evidence that the partition β is function of R. Extension of the theory to a two dimensional domain 

presents no particular difficulty. The new equation reads: 
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APPLICATION 

 

Consider a two dimensional domain given by 1,1x , 1,1y . The diffusion coefficient 

1.0D  is constant but the reactivity coefficient is given by the following distribution law

 2020exp5 22 yxR . The secondary flux is assumed to follow the relation 
**

2Ψ corresponding 

to the anisotropic effect in the concentration spreading. The relation between β and  R is given by 

 5exp 2R . The initial condition is given by 
22 1010exp0,, yxyxq  and the boundary 

conditions correspond to no flux, both primary and secondary. The solution is presented in the 

Fig.2. Clearly as t  increases the concentration at 0x , 0y increases growing in the opposite  

direction as compared with  the classical solution. The effect of yxR , concentrated around the 

center of the domain exerts an attraction effect pulling the particles towards the center. It is as if the 

Fig.2. Time variation of the concentration at (0,0) and (1,1). Secondary flux defined with 

q**

2Ψ equation 2-b 

 



reactivity coefficient would be able to create an attraction field pulling the particles towards the 

center. Fig.2 shows the concentration at  (0,0) and (1,1). The concentration at (0,0)  grows very 

quickly and reaches its maximum q(0,0,001)= 2.55 for t=0.001. After reaching the maximum value 

the concentration decreases very slowly. It is expected that after a sufficiently long time the 

concentration distribution will approach a uniform configuration yxq , constant. The solution 

with the secondary flux defined as 
*

2Ψ  presents the same qualitative behavior except that the initial 

jump of the concentration at (x=0,y=0) is smaller.  This type of behavior may well represent the 

scattering process of heat sensitive particles or the initial motion of cells with the reactivity 

coefficient associated to heat or nutrient sources respectively.   

 

CONCLUSIONS 

 

The bi-flux diffusion theory is new and despite the lack of a consistent experimental  comprobation 

several challenges emerging from concrete problems as diffusion of living organism and particles 

sensitive to some energy source might better dealt with the proposed approach. Several points 

remain to be better clarified particularly the proper relationship between the particle fraction β and 

the reactivity coefficient R and  the analysis of the influence of the secondary flux on the solution. 

The physical significance of the choice of the expression of the secondary flux should also be 

further investigated. It is also expected the reactivity coefficient R to be a function of the 

concentration which will lead to complex non-linear equations. Also the term β(1− β) in the 

governing equation might lead to chaotic behavior . It is also interesting to note that complex capital 

flow might take advantage of a bi-flux process which is well appropriate to simulate real situations.  

Being a new approach it is necessary to join people interested in diffusion models to advance the 

analytical treatment and perform adequate experimental work.  
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