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Abstract - in this paper transient Rayleigh-Bénard convection and volumetric radiation are 

investigated by means of the lattice Boltzmann method (LBM). First, Rayleigh-Bénard 

convection is solved using LBM and then are compared with those available in the literature. 

Then the combined transient case, Rayleigh-Bénard convection-radiation in participating 

media is extended, where LBM, is used, both to calculate the volumetric radiative information 

needed for the energy equation, which is solved using the LBM. In all cases, good agreement 

has been obtained. The recent numerical approach is found to be efficient, accurate, and 

numerically stable for the simulation of fluid flows with heat and mass transfer in presence of 

volumetric radiation in participating medium.  
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1. Introduction  

The lattice Boltzmann method (LBM) has emerged as an efficient method to analyze a vast 

range of problems in fluid flow and heat transfer (Chen, 1999, Succi, 2001, Wang, 2013, 

Jiaung, 2001, Mishra, 2005, Chaabane, 2011a, Chaabane, 2011b, Mondal, 2009a, Mishra, 

2009, Chaabane, 2011c, Asinari, 2010 and Di Rienzo, 2011), because it uses simple 

microscopic kinetic models to stimulate complex transport phenomena. 

The use of the LBM to formulate and solve different types of heat transfer problems 

involving volumetric radiation in different geometries has been extended (Mishra, 2014a, 

Mishra, 2014a, Chen, 1999, Succi, 2001, Wang, 2013, Jiaung, 2001, Mishra, 2005, Chaabane, 

2011a, Chaabane, 2011b, Mondal, 2009a, Mishra, 2009, Chaabane, 2011c) but the radiative 

information was computed using the conventional CFD-RTE solvers. 

 The present paper deals with the solution of a coupled transient Rayleigh Bénard 

convection and radiation heat transfer problem in a participating rectangular geometry where 

the computations of the radiative information and the solution of Navier-Stokes equations are 

done using the LBM.  

2. Dynamic equations 

The governing lattice Boltzmann equation is given by (Succi, 2001) for the density and 

velocity 
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where
kf are the particle distribution function defined for the finite set of the discrete 

particle velocity vectors kc . The collision term 
k on the right-hand side of Eq. (1) uses the 

so called BGK approximation (Wang, 2013, Jiaung, 2001). 
eq

kf is the local equilibrium 

distribution function that has an appropriately prescribed functional dependence on the local 

hydrodynamic properties and
v  is the relaxation time . F represents the external force term.  

For the D2Q9 lattice used in the present work, the relaxation time 
v  is defined as 

(Chaabane, 2011a, and Chaabane, 2011b): 
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Where c is the lattice speed 3c RT .  

 

The kinetic viscosity   appearing in Eq. (2) is computed from the Prandtl number 

Pr /   and Rayleigh number 3( ) /T h cRa g T T H   . hT
 
is the hot wall temperature,   cT  is 

the cold wall temperature,  is the thermal diffusivity, g is the acceleration due to gravity, H 

is the height of the cavity. It is to be noted that viscosity is selected to insure that Mach 

number is within the limit of incompressible flow (Mishra and Mishra, 2014a, 2014b).  

The macroscopic density  and the velocity u are calculated as follow:  
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3. Thermal equations 

The governing lattice Boltzmann equation for the thermal field and the volumetric 

radiation are given by (Chaabane, 2011a, Chaabane, 2011b, Mondal, 2009a, Mishra, 2009): 
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 where kg is the particle distribution function denoting the evolution of the internal 

energy, is the thermal diffusivity, T is the relaxation time and Rq is the radiative heat flux.  

/ pk C  is the thermal diffusivity.
eq

kg is the equilibrium particle distribution function. 

Temperature is calculated from the equation of state, e RT   

     T( , ) ( , )k
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The divergence of radiative heat flux appearing in Eq. (11) is given by  
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Where k a , is the absorption coefficient and G is the incident radiant energy. It is 

convenient to consider a pseudo-transient equation as the starting point of the LBM formalism 

where the transient RTE is rewritten as 
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Equation (8) can be rewritten as (Asinari, 2010 and Di Rienzo, 2011): 
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eq

iI is the equilibrium distribution function and  G is the incident radiation. 

4. Results 

Our recent approach will be validated against results presented in (Mishra, 2014b) where 

momentum and energy equations are formulated and solved using the lattice Boltzmann 

method (LBM) but the volumetric radiative information needed in the energy equation is 

computed using the Finite Volume Method (FVM). Figure 1 shows isotherms contours for 

Pr=0.71, Ra=25000, β=1, 0  , time step=20000 and RC=250. In all cases a good agreement 

was achieved. 
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Fig. 1: Isotherms for Pr=0.71, Ra=25000, β=1, 0  , time step=20000 and RC=250, (a) 

reference(Mishra2010b), (b) present work. 
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4. Conclusions 

With the effects of radiation on RB convection, an LBM code was validated for different 

cluster values with the results available in literature. All results were found to provide 

accurate results. This non-coupled and non-hybrid numerical approach has the advantage can 

be extended to other complex engineering heat and flow transfer problems including more 

sophisticated geometry. 
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