
Proceedings of CHT-17
ICHMT International Symposium on Advances in Computational Heat Transfer

May 28-June 1, 2017, Napoli, Italy

CHT-17-021

SPATIAL VERSUS ANGULAR PARALLELIZATION FOR SOLUTION OF RADIATIVE
TRANSFER EQUATION IN PARTICIPATING MEDIA

M.A. Badri∗,∗∗, Y. Favennec∗∗,§, P. Jolivet∗∗∗, D. Le Hardy∗∗, S. Le Corre∗∗, and B. Rousseau∗∗
∗Institut de Recherche Technologique Jules Verne, 44340 Bouguenais, France

∗∗Laboratoire Thermocinétique de Nantes (UMR CNRS 6607), 44306 Nantes, France
∗∗∗Institut de Recherche en Informatique de Toulouse (UMR CNRS 5505), 31062 Toulouse, France

§ Correspondence author. Ph: +33 (0)240683138 Email: yann.favennec@univ-nantes.fr

ABSTRACT This paper presents two very different methods of parallelization applicable to the solu-
tion of the multi-dimensional monochromatic radiative transfer equation. Algorithms concerning the
two methods, namely angular decomposition methods and domain decomposition methods, are sepa-
rately developed using the Message Passing Interface (MPI) and implemented in order to achieve fast
and memory efficient solutions. A detailed comparison of performance and scalability on thousands
of processors is established for both methods.

INTRODUCTION AND MOTIVATION

Radiative transfer calculations are vital for a wide range of natural and engineering applications, pri-
marily the ones involved in high temperature physics. Many such applications are modelled using
the monochromatic steady-state radiative energy, which at mesoscopic and macroscopic scales, is of-
ten conceptualized by the transport of radiative intensity I(x, s), via an integro-differential equation
known as the radiative transfer equation (RTE):

(s · ∇+ κ+ σs) I(x, s) = σs

∮
Sn−1

I(x, s′)Φ(s, s′) ds′ + κIb(x) ∀x ∈ Rn, s ∈ Sn−1 (1)

Herex ∈ Ω ⊂ R
n reads the space variable with n = 2 or 3, for 2D or 3D domains, respectively, and s

defines the unit vector pointing towards the unit sphere Sn−1. On the right-hand side of Eq. (1), κIb is
the Plank's black body emission source, and the source due to scattering effects in radiation is depicted
by the integral term. To the left, we sum up loss terms via absorption κI , scattering σsI and a transport
term s · ∇I . Due to its integro-differential nature, RTE cannot be used for computing the radiation
field via any explicit numerical method. Hence we follow a two-step discretization process i) angular
discretization on angular space Sn−1 (P0 finite element basis functions) and ii) spatial discretization
on spatial spaceΩ (P1 orP2 vectorial finite element basis functions). Following theP0 angular space
discretization, the radiative energy I(s,x) is discretized into m groups of intensities based on ordi-
nates\angles, which is similar to what we would obtain with the Discrete Ordinate Method (DOM).

Computing the solution of such equations requires solving a large linear system. So far, much work
has been performed in the area of parallelization when radiative transfer is solved using stochastic
approaches such as Monte Carlo methods. However, the parallelization of deterministic approaches
(such as the finite element method) has hardly been studied in this field.

From hereafter the remainder of the paper is organized as follows: a vectorial finite element strat-
egy which is used to reduce the system of equations into a solvable linear system is discussed next.
Then a section on parallelization strategies for solving RTE is presented. In the last part of the paper,
we discuss and conclude the results obtained via our solution strategies.



VECTORIAL FINITE ELEMENTS FOR SOLVING RTE

When it comes to finite element solutions of RTE, traditionally, the Streamline Upwind Petrov--
Galerkin (SUPG--FEM) and the Discontinuous Galerkin--FEM are most widely used. Le Hardy et al.
[2016] presents the comparison between the two different methods for a 2D case. These two methods,
when applied successively for each direction of the angular discretization, yield a huge block matrix
which is composed of n × n submatrices, each row of the global matrix being related to a particular
direction, and the off-diagonal matrices being related to the scattering operator. In such a way, the
unknown Im(x), ∀m = 1, . . . , Nd, is to be searched in a given functional space, say Vh, which is itself
a subset of H1(D).

Alternatively, we introduce SUPG based on vectorial finite elements. Note that this notion, which is
also known as the Mixed Finite Element Methods, was first used by Herrmann [1967] in connection
with elastic theory to denote methods, based on the Hellinger--Reissner principle, in which both dis-
placements and stresses were approximated simultaneously. The problem consists in searching a vec-
tor of radiative intensities I = [I1 I2 · · · INd

]T utilizing a vectorial test functionV = [v1 v2 · · · vNd
]T

and, in a similar fashion S and Θ, for denoting directions and scattering. Doing so, the functional
space in which the solution is searched may be, for example, H1(D)Nd =

∏Nd

i=1H
1(D), i.e., a mixed

space. Denoting β = (κ + σs) as the extinction coefficient, the RTE (1), can be rewritten to its
semi-discretized form:

S · ∇I+ βI−ΘI = κIb1

Then, a SUPGvectorial weak formulation can now be built bymultiplying the equationwith a vectorial
trial function, for exampleH = V + γS · ∇V, γ : Ω 7→ R+, then integrating it over the domain D∫

D
[(S · ∇I+βI) : (H)] dx−

∫
D
[(ΘI) : (H)] dx =

∫
D
[(κIb1) : (H)] dx (2)

To follow, Green's theorem is applied on the advection term of Eq. 2, in order to exhibit boundary
conditions. A finite element approximation on this equation yields a linear system, AI = b, which
is then to be solved. Note the large dimension of such matrix, as soon as one considers hundreds of
directions.

PARALLEL RTE SOLUTION

Considering the fact that there exists a need to solve large linear system of equations, for time effi-
ciency (during the assembly and the solution phases), parallelization becomes inevitable. Although
domain decomposition is the standard approach for numerical parallelization of partial differential
equations, the RTE being dependent on both spatial and angular discretizations, we attempt to paral-
lelize it via both domain decomposition (DD) and angular decomposition (AD) approaches.

Spatial Decomposition Algorithm for RTE Contrary to the classical matrix formulated using
SUPG--FEM, SUPG vectorial FEM formulates a sparse and banded matrix. We tend to exploit such
structure by applying a Krylov subspace method for the solution phase. The original meshM is par-
titioned into N number of small local overlapping meshesMi. Each process owns one of these local
submeshes. A mesh partitioner such as METIS Karypis and Kumar [1995] is used to ensure proper
load balancing. The vectorial variational formulation Eq. (2) is used to assemble the local matrices
in each MPI process. From here on, we use the Restricted Additive Schwarz (RAS) method as a pre-
conditioner for the GMRES algorithm. Following the notation of Jolivet et al. [2012], we use a set
of diagonal matrices {Di}i=1,...,N which defines a partition of unity, and a set of restriction matrices
{Ri}i=1,...,N , such that the preconditioner reads:

M−1 =
N∑
i=1

RT
i Di(RiAR

T
i )

−1Ri



Angular Decomposition Algorithm for RTE In this approach, we dispatch the angular space to
different MPI processes. Since the lowest order P0 finite element discretization in angles leads to
discrete equations which can be independently built on the meshM, this results in an embarrassingly
parallel work distribution. Using vectorial finite elements, these equations can be combined in sets
leading to sparse matrices for each set of ordinates. AD possess the following advantages: i) perfect
load balancing, as all MPI process are in charge of exactly the same number of unknowns; ii) each
MPI process independently assembles and solves their respective linear systems without the need of
communications; iii) consistent results, as the number of iterations required to achieve convergence is
independent of the number ofMPI processes. The only limitation of AD comes from the fact that since
low-order P0 elements are used to discretize the angular space (in practice, no more than hundreds of
angles), the maximum number of usable MPI process is defined by the discretization.

RESULTS

Two numerical tests involving a 2D geometry with value of scattering albedoω ≃ 0 (highly absorbing)
and ω ≃ 1 (highly scattering), and 32 P0 unknowns for the angular space discretization, were solved
on supercomputer LIGER, at ICI supercomputing facility (6,048 cores, Intel Xeon cluster) in Ecole
Central Nantes, France. We assumed a simple square geometry [0, 1] × [0, 1] meshed with 21,000
nodes, with Dirichlet boundary conditions in terms of radiative intensities on its left border. It is also
worth mentioning that before performing these tests, code arising from both AD and DD algorithms
were validated using the method of constructed solutions as used in Le Hardy et al. [2016]. In more
details, the codes have been written using the finite element domain-specific library FreeFem++ to
assemble the linear systems, which then calls PETSc (Balay et al. [2014]) for solving them.

The aim of the numerical tests is to compare the parallel scaling of AD and DD methods for solving
RTE. The comparison is based on elapsed wall-clock time for twomajor subroutines: matrix assembly
and solution phase. We neglect pre- and post-processing times.
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Figure 1. Scaling test comparison for two cases of high and negligible scattering;
Left: Matrix building time; Right: GMRES solving time

In Fig. 1, the scalability for both angular and domain decomposition methods can be very well demon-
strated: computation time for matrix assembly decreases almost linearly when the number of MPI
processes are increased. For solving time, DD methods exhibit superior scalability. Since 32 P0

unknowns were considered for the angular space discretization, AD algorithm is limited to 32 MPI-
processes while there is no such limit for DD method.



From Table 1, notice that, for both AD and DD methods, the total iteration counts remain almost con-
stant while increasing the number of MPI processes. However, total iteration count for DD method
remains higher than that of AD method. We don't use any preconditioner yet, but this table suggests
that the condition number is rather low since the Krylov solver converges in at most 500 iterations.

Table 1
Comparison between AD and DD method for a problem with 2.62× 106 degrees of freedom

# of MPI processes # of iterations (ω ≃ 1) # of iterations (ω ≃ 0)

AD DD AD DD

2 473 516 293 303
4 473 521 293 303
8 473 524 293 305
16 473 523 293 304
32 473 519 293 301
128 518 300
512 518 300
1024 517 300

This is very promising since we should be able to design preconditioners that will make the iterative
solver converge very rapidly (in terms of number of iterations).

CONCLUSIONS

We conclude that our approach for both spatial and angular decomposition is scalable on parallel ma-
chines. DD method is scalable to higher processor counts while AD has a strong limit, the order of
the angular discretizations. Considering no preconditioning for the solving phase, DD methods ex-
hibit superior scalability than ADmethods. The design of more efficient preconditioners, which could
change the dynamics of time to solution, will be our next objective.
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