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ABSTRACT  A numerical model based on the diffuse interface approach  is developed to simulate 

the phase separation of binary Upper Critical Solution Temperature (UCST) mixtures with critical 

and off-critical compositions in 2D geometry. The modeling is intended to simulate the response of 

such mixtures whilst cooled into the unstable region or to the metastable region. With an off-critical 

composition, the initial homogeneous mixture may separate via nucleation and growth mechanism, 

provided it is exposed to a strong enough composition perturbation. In this study, the numerical 

model is used to explore the response of off-critical composition mixtures to white noise and two 

different forms of nuclei: a circular drop, and a 2D wavelet. The significant differences in the phase 

separation processes taking place with critical solution via spinodal decomposition, and off-critical 

compositions via nucleation and growth, are demonstrated and discussed. While a white noise 

perturbation in concentration suffices to trigger separation in the unstable region, nuclei exceeding a 

critical size are required to initiate the separation in the metastable region.  

  
NOMENCLATURE 

 

a typical length scale of spatial inhomogeneity 

   constant microscopic length 

   body force due to concentration gradients (Korteweg force) 

    partial molar enthalpy 

   diffusive molar flux  

   conductive energy flux 

    inter-diffusion energy flux 

R nuclei's radius 

     equivalent radius of a wavelet or a drop  

  molar fraction  

  mixture's viscosity 

     non-local part of the generalized chemical potential 

  stream function 

  Maragules parameter 
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INTRODUCTION 

 

Partially miscible binary mixture undergoing a temperature quench below its miscibility curve 

would become either meta-stable or unstable. This depends on the composition and the depth of the 

temperature quench. A schematic description of the phase diagram of a binary system with an 

Upper Critical Solution Temperature (UCST) is shown in Figure 1. With a critical composition, any 

quench below the critical temperature is into the unstable region, which is defined by the spinodal 

curve, results in phase separation via spinodal decomposition. It is a spontaneous delocalized 

process with a formation of unstructured domains of the separating phases. With an off-critical 

composition and a deep enough quench, the system passes the meta-stable region, reaches the 

unstable region, and separates via nucleation (e.g., Ullmann et al., 2008). However, a shallow 

quench to the region confined between the miscibility and spinodal curves would lead to a meta-

stable state, where a system may remain as a single phase for a long period (similarly to 

superheated/cooled liquids). In this case, only nuclei with an initial radius larger than a critical 

value grow, whereas those having an initial radius smaller than the critical one are reabsorbed 

(Lamorgese and Mauri, 2005). Following the nuclei formation a process of droplets growth by 

mechanisms of diffusion, convection and coalescence is taking place until eventually two separated 

phases with compositions corresponding to the binodal (equilibrium) curve will be formed.  

We develop a 2D numerical model for phase separation of binary mixtures with off-critical 

composition. The diffuse interface approach was used to derive the model equations for the 

conservation of mass, momentum and energy. These conservation equations were previously used 

to study isothermal and non-isothermal spinodal decomposition of a critical composition mixture 

(Segal et al., 2012, 2015). In this study, the numerical tool is used to explore the response of off-

critical composition mixtures, which are quenched into the metastable region or into the unstable 

region within the spinodal curve. The significant differences in the phase separation processes 

taking place in the two-cases, compared to spinodal decomposition of a critical solution, are 

demonstrated and discussed.  

 

Figure 1. Binodal (coexistence, equilibrium) and spinodal curves obtained by one-parameter 

Margules equation, showing the quench of a critical solution. (A) critical quench, (B) off-critical 

quench to the unstable region, (C) off-critical quench to the meta-stable region. 
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GOVERNING EQUATIONS 

 

As the interface between the separating phases is initially non-existing and gradually evolves in 

time, the modeling and simulation of the phase separation process can be carried out via the diffuse 

interface approach, where all properties are considered to vary continuously over the diffuse 

interface. The governing equations for a two-component system Upper CST (of equal density and 

equal molar weight), which include the conservation of mass, momentum and energy, were 

presented in Segal et al. (2012) as follows: 
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where v is the mixture velocity,   is the concentration field (component B in Figure 1), j is the 

diffusive mass flux, p is the pressure.  ,    are the mixture's density and viscosity, respectively.    

is the Korteweg force given by ( ) NLF Mf   f=  , where 2 2

NL RTa f=    is the non-local part of 

the generalized chemical potential and (a) is the length scale of the spatial inhomogeneity that is 

included in the generalized free energy coarse-grained Landau-Ginzburg functional (Cahn and 

Hilliard, 1958,1959). It is proportional to the surface tension between the separated phases and for 

low viscosity liquid is of the order of 0.01 to 0.1 μm (e.g., Vladimirova et al., 2000, Poesio et al., 

2006). In the energy Eq. (4), c is the specific heat of the mixture,         is the sum of 

conductive ( )cq k T=    and inter-diffusion energy fluxes             and 
iH , ij  are the partial 

enthalpy and diffusive mass flux of component i, respectively (see Bird et al., (1960)). The typical 

length scale (a) relates to the surface tension   between the separated phases (van der Waals, 1979), 

and takes the form of: 
 

        

             
 (5) 

 

where    is a temperature independent microscopic length scale. Note that the factor B has been 

introduced to avoid singularity at the critical point (i.e., B=1, except in close proximity to the 

critical point, where B=1-ε, ε →0 is used). By applying B=0, the typical length scale takes the form 

of  ˆa a=  , as was applied in Molin and Mauri (2007). A “regular solution” was adopted as a 

model for the thermodynamic Gibbs free energy of a non-ideal two-component system, with the 

one-parameter ( 2 /cT T = ) Margules model to represent the excess part (e.g., Lupis, 1983). The 

corresponding binodal (coexistence) curve and spinodal curves are shown in Figure 1. 

 

As the study is restricted to two-dimensional systems, the velocity components can be expressed in 

terms of a stream function, i.e., 1 2,v y v xy y=   =   . The following dimensionless variables 

are introduced:  
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Upon rescaling, the final dimensionless form of the conservation equations (mass, momentum and 

energy) reads: 
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where 
2ˆ( ) ( )PeN a RT D =  is the Peclet number, and LeN D=  is the Lewis number. The 

boundary conditions are: zero mass flux through the two cooled walls (maintained at constant 

temperature T=Tw) and no-slip condition for the velocity field. To maintain impermeable walls, the 

boundary conditions are set to       and zero sum of the last two terms in Eq.(7) at the cooled 

walls. At the other two boundaries, periodic boundary conditions are set.  

 

For off critical quench into the meta-stable region, a single perturbation centered in the middle of 

the domain is added to the initial uniform concentration field. The initial perturbation takes the form 

of a 2D Mexican Hat Wavelet, which is defined by: 
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where   defines the wavelet's maximum height, which was placed to the value of the higher 

equilibrium concentration    
  (rich in component B, see Figure 1 and Figures 4,5). As the total 

contribution of the wavelet's "positive" hill and surrounding "negative" lows (with respect to the 

initial uniform concentration field) sums to zero, there is no need to readjust the bulk concentration 

of the entire computational domain (as to maintain the mass balance) upon the introduction of the 

disturbance.  

 

The governing equations are spatially discretized by a cell-centered second order accurate 

approximation, and solved on a uniform square grid. The simulation starts with an initial 

homogeneous concentration field. The initial temperature field is also homogeneous, with a value 

above the critical temperature. At each time step n, all three equations are solved for the 

temperature, concentration and velocity fields. The bi-harmonic equation for the velocity field can 

be solved implicitly using a fast Fourier transform (FFT) algorithm. After achieving the velocity 

field for the time n+1, it can be used to compute the concentration and temperature fields for the 

next time step n+1, using a straightforward first order explicit Eulerian scheme. The computations 

were validated by using various mesh size and time step size, to assure convergent results. The 

results presented below were obtained by using a 100X100 grid with dx=0.75 â  and d  =10
-3

. In case 

immediate quench to a final uniform temperature was assumed in the simulations presented, the 

energy equation (4) is excluded from the model.   

 

RESULTS AND DISCUSSION 

 

A demonstration of the simulation results for the phase separation process obtained with a critical 

quench and off-critical quenches are shown in Figures 2-5. Figure 2 shows the simulation results for 

a critical quench. The solution is initially at a uniform critical composition (i.e., temperature above 

the CST) and immediately quenched to a constant and uniform temperature below the CST (case A, 

Figure 1). As shown, the simulated phase separation is, in this case, associated with the formation of 

unstructured network of domains, which are characteristic to spinodal decomposition (Figure 2a). 

The domains grow with time and their boundaries become sharper. The corresponding velocity 

field, which results from the chemical potential gradients, is shown in Figure 2b. Obviously, the 



highest velocities are at the regions of the diffuse interface between the separating phases. Note that 

when considering low molecular weight (and low viscosity) liquids, the entire simulation domain is 

in the range of 1 to 10 μm, and the time scale of 100   corresponds to               With these 

scales the velocities are of the order of few cm/sec. 
 

   

                          

(a) 

    
(b) 

    
 

Figure 2. Spinodal Decomposition of a critical composition solution (quenched to      with 

initial “white noise" in concentration of 10-2), Pe= 10
3
. Upper figures (a) – concentration field, 

lower figures (b) – velocity field. 
 

                          

    

    
 

Figure 3. Decomposition of off-critical composition solution,         , quenched to       

(with initial “white noise" in concentration of 5*10-2), Pe= 10
3
. Upper figures – concentration field, 

lower figures – velocity field. 

 

The decomposition of off-critical composition solution with initial uniform composition of     
     , that is quenched into the unstable region (i.e., within the spinodal curve, case B in Figure 1)  

is shown in Figure 3. The final temperature is the same as that in Figure 2 (   ). However, as 

shown, the domain's morphology of the separating phases is definitely different and corresponds to 

circular structures, which are characteristic to a nucleation and nuclei growth of the minority phase 



(the phase with the higher concentration of component B). The separation process is much slower 

compared to spinodal decomposition (although the initial "white noise" introduced is higher), and 

the velocities induced during the process are lower.  

  

                          

    

    

    
 

Figure 4. Nucleus growth in off-critical composition solution,         , Pe= 10
3
, quenched into 

the metastable region,       (initial field with a nucleus larger than the critical size, Req=5.16  ). 

Upper figures – concentration field, middle figures – nucleus (wavelet) composition, lower figures 

– velocity field. 
 

The decomposition of an off-critical composition solution with an initial uniform composition of 

         that is quenched into the meta-sable region (      , case C in Figure 1) is shown in 

Figures 4 and 5. According to Gibbs, a meta-stable system becomes unstable when the nuclei 

exceed a critical size, R>Rc, as opposed to the unstable region, where a nucleus of any size would 

grow spontaneously. As shown, the initial nucleus introduced in Figure 4 exceeds the critical size, 

and the phase separation proceeds with time. On the other hand, when the initial nucleus size is 

smaller than a critical value (Figure 5), the nucleus is absorbed and vanishes.   

 

In order to characterize the nucleus radius associated with the wavelet perturbation, its equivalent 

radius is defined. It corresponds to the radius of an equivalent (2D) drop of a uniform concentration 

   
   

  
  
 . Accordingly, the equivalent radius of the wavelet is the radius of a droplet of 

concentration    
 , and a molar mass (of components B, m) that is equal to that of the mass of the 

wavelet part where the concentration exceeds the initial field concentration.  Hence: 
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Inspection of Figures 4,5 shows that at short times there is a decrease in the maximal concentration 

of the nucleus. For a large enough initial nucleus (Req=5.16   in Figure 4) the decrease is followed 



by a later recovery of the maximal concentration, back towards the equilibrium value,    
 . However 

for smaller size nucleus (Req= 2.06   in Figure 5) the maximal concentration continues to decrease 

towards the initial concentration value,   . 
 

                         

    

    

    
 

Figure 5. Decay of a nucleus in off-critical composition solution,         , Pe= 10
3
, quenched 

into the metastable region,       (initial field with a nucleus smaller than the critical size, Req= 

2.06  ). Upper figures – concentration field, middle figures – nucleus (wavelet) composition, lower 

figures – velocity field. 

 

In Lamorgese and Mauri (2005), a simulation of off-critical quench into the meta-stable region was 

carried out by introducing to the initial uniform concentration field a nucleus in the shape of a 

circular drop with a uniform concertation of       
  . To avoid a sharp interface between the drop 

and the bulk, the concentration was assumed to reduce to the surrounding bulk concentration over a 

length scale a.  Accordingly, the concentration distribution of circular drop nucleus introduced is 

given by:   
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where    denotes the drop radius, and    is the bulk concentration. To maintain the initial overall 

composition, the bulk concentration of the entire domain has to be readjusted, whereby:  
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where       . Therefore, the effect of introducing such a nucleus is in fact non-local and spread 

instantaneously over the entire domain. 
  
Figure 6 presents the concentration profile evolution when a circular drop (Eqs.12-13) is introduced 

and the solution is quenched into the meta-stable region (same parameters as in Figures 4,5). Also 

in this case, the initial drop size should exceed a critical value to enable its growth (e.g., Figure 6b) 

and avoid its absorption into the bulk (e.g., Figure 6a). Similarly, to the wavelet nucleus, here too, 

even with R>Rc, the maximal concentration in the nucleus may initially decrease with time, but 

eventually it starts growing and reaches the equilibrium (maximal) concentration,    
  (see Figure 

7). The concentration perturbation introduced by a wavelet-shaped nucleus is more moderate 

compared to a circular nucleus, and therefore its critical Req is somewhat higher, yet similar to that 

of a circular nucleus. However, Figure 6 shows that an initial circular drop nucleus evolves in time 

into a wavelet shape, thus supporting the premise that a wavelet is a more appropriate form of an 

initial nucleus to simulate phase separation in the meta-stable region. Obviously, a spontaneous 

formation of a nucleus with a concertation higher than that of the bulk is on the expense of its 

immediate surrounding, rather than on the expense of entire bulk domain.  
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Figure 6. Concentration profile at time 0 (on the left) and 250 (on the right) following: 

(a) Drop perturbation with R0 = 1.61   and  (b) Drop perturbation with R0 = 2.09   (        ,  

Pe= 10
3
,       . 

 



 
Figure 7. Maximal concentration for wavelet and drop perturbations:         , Pe= 10

3
,   

     dashed horizontal lines mark the equilibrium concentrations of the separating phases). 

 

CONCLUSIONS 

 

A numerical solution of a diffuse interface model has been used to study the phase separation 

process of a binary Upper Critical Solution Temperature (UCST) mixture when it is quenched 

below its miscibility curve to the unstable region, or to the meta-stable region. As expected, 

quenching of a critical composition was shown to result in a spinodal decomposition, while with an 

off-critical composition, the initial homogeneous mixture separates via nucleation and growth 

mechanism, provided it is exposed to a strong enough composition perturbation. In this study, the 

numerical tool is used to explore the response of off-critical composition mixtures to white noise 

and two different forms of nuclei: a circular drop, and a 2D wavelet. The significant differences in 

the phase separation processes taking place with a critical composition via spinodal decomposition, 

and with off-critical compositions via nucleation and growth, are demonstrated and discussed. 

While a "white noise" perturbation in concentration suffices to trigger separation in the unstable 

region, nuclei exceeding a critical size are required to initiate the separation in the metastable 

region. 

 

Inspection of the velocity field reveals the convection driven by the Koteweg forces due to chemical 

potential gradients. The convection is shown to be pronounced in the vicinity of the diffuse 

interface formed between the separating phases, where the concertation gradients are the highest. 

This convective motion enhances the separation process and can augment the transport phenomena 

accompanying the separation process (e.g., heat transfer). The convection and the rate of phase 

separation were found to be much faster in spinodal decomposition of solution with critical 

composition, compared to the nucleation and growth mechanism of off-critical composition 

mixtures. These findings have implication on the heat transfer rates augmentation via inducing 

phase separation of CST mixtures when such mixtures are used as coolants or heating fluids (see 

Ullmann et al., 2014a, Ullmann et al., 2014b).  
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