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ABSTRACT

This communication aims to present a topology optimization method for thermo-fluid flow
problems. The cost function gradient is computed via an adjoint-state Lattice Boltzmann
Method. The LBM Forward problem for fluid flow and heat transfer is written as:
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The optimization problem is defined with the design parameter α:

min j(α) = J̄(f , g, α) subject to Y ≤ 0

The following inner product is introduced, for conciceness of the derivation that follows:
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The cost function gradient is defined as:
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The cost function gradient is rewritten by introducing adjoint-states g∗ = {g∗i } and f ∗ = {f ∗i }
:
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Rf = {Rf
i } and Rg = {Rg

i } are the LBM residuals. P f = {P f
i } and P g = {P g

i } contain the



LBM boundary conditions. Then following the work carried out by Favennec et al. [2016] in a
different context , the ALBE for f∗ and g∗ are obtained by identification between (1) and (2):
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The optimization method is validated with a 2D thermal flow in a domain of 100×100 [mm]
(Figure 1). The fluid is water and the solid is steel. The flow is laminar and positive heat
fluxes are prescribed on top and on bottom of the domain. The boundary conditions are given
on Figure 2. The optimization objective is the mean temperature minimization subject to
pressure drop constraint (∆Pmax = Cmax∆Pini, Cmax = 20 for the following results). As we can
see on Figure 4, the solid is introduced to bring the fluid near to the hot top and bottom walls.
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Figure 1: Problem configuration
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Figure 2: Boundary Conditions
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Figure 3: Convergence of the cost function
and the constraint
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Figure 4: Evolution of the geometry dur-
ing optimization iterations
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