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ABSTRACT  In this work, we derive an analytical solution for heat transfer characteristics of a 
thermally developing flow of viscoelastic fluids under the application of an electroosmotic force. The 
walls are subjected to either in isothermal condition or a constant wall heat flux is employed. First, we 
derive a Helmholtz-Smoluchowski (HS) type slip velocity for the viscoelastic fluids, which is further 
used to simplify the energy equation. The Laplace transform method is employed with respect to the 
longitudinal variable to get a reduced form of the energy equation. The resulting expressions are 
inverted using residue calculus and as well as a Fourier series based numerical method to obtain the 
temperature distribution within the microchannel. Based on the analytical solution, we also derive an 
expression for the local heat transfer coefficient and Nusselt number. Two types of viscoelastic fluids, 
linear and exponential PTT fluid, are considered here. From this study it is found that, with increasing 
viscoelastic parameter, the advective heat transport is more in case of exponential-PTT fluid compared 
to linear-PTT fluid and hence requires less channel entrance length to reach at the fully developed 
state. The results obtained here, may have important implication towards the thermal management of 
bio-microfluidic devices. 

Nomenclature 

De  Deborah number  Permittivity of the medium (F/m) 
e  Elementary charge (C)  EDL potential (V) 

xE  Applied electric field (V/m)  Zeta potential (V) 

J Non-dimensional Joule heat 1  EDL thickness (m) 

Bk  Boltzmann constant (J/K)   Non-dimensional channel length 

fk  
Thermal conductivity (W/mK)   Non-dimensional channel height 

n  Cationic/anionic number densities (m-3) τ  Viscoelastic stress tensor 

0n  Bulk ionic number density(m-3)   Fluid viscosity (kg/ms) 

Nu  
Local Nusselt number  Relaxation time of the fluid 

TPe  
Thermal Peclet' number   Extensibility parameter of the fluid 

Wq  Wall heat flux (W/m2) b  Bulk ionic conductivity (S/m) 

WQ  
Non-dimensional wall heat flux 

f  Fluid density (kg/m3) 

T  Absolute temperature (K) Pc Specific heat capacity (J/kg K) 

0T  Inlet temperature (K)  Non-dimensional temperature 



WT  Wall temperature (K) m Non-dimensional mean temperature 

HSU  
Helmholtz-Smoluchowski velocity (m/s) trτ Trace of  stress tensor τ  

z  Valence Erfi  Imaginary error function 
 

 
INTRODUCTION 

  

The advent of miniaturization made enormous progress through the novel electroosmotic flow 
(EOF) actuation mechanism, where an ionic solution is driven by an externally applied electric field 
within a charged narrow confinement (Hunter [1981], Probstein [1994]). To maintain a high 
throughput, the conventional pressure pumps are more prone to mechanical failure, whereas the 
electroosmotic pump does not require such mechanical parts and can transport the fluid by 
exploiting the fluid-solid interfacial characteristics together with an external electric field. The 
simplicity of the device leads to the development of a huge proportion of the microfluidic devices, 
such as bio-micro/nanofluidic devices, cooling of MEMS, muTAS, Lab-on-a-Chip, etc. A common 
feature of EOF is the plug-like velocity profile which reduces the dispersion of transported samples. 
On the other hand, the high electric field strength and conductivity of the solution lead to the Joule 
heat which may have adverse effect on the transport of thermally labile biological samples. 
Therefore, besides the volumetric transport the thermal management of the device also become 
important for design optimality.  

  The suitability of EOF in thermal management of microelectronic devices was also explored 
(Maynes and Webb [2003a-b, 2004], Horiuchi and Dutta [2004], Tang et al. [2004], Dutta et al. 
[2006], Das and Chakraborty[2006], Chen [2009], Dey et al. [2011, 2013], Xuan and co-
workers[2004a-b, 2005, 2008]) extensively. Maynes and Webb [2003a-b, 2004] have thoroughly 
discussed the thermal characteristics of an electroosmotic flow. They analytically investigated the 
thermally fully developed electroosmotic flow in a parallel plate and circular microchannel, 
neglecting the viscous dissipation. They have shown that the Nusselt number in case of a thermally 
developed flow reaches to 12 for parallel plate channel and 8 for circular channel (based on the 
hydraulic diameter of the channel). The effect of viscous dissipation becomes important for higher 
electrical double layer thickness. This has been further extended to thermally developing flows by 
Boderick et al. [2005] and Iverson et al. [2004]. In another study, Horiuchi and Dutta [2004] have 
described the thermally developing EOF for thin electric double layer and small zeta potential. They 
have analytically obtained an expression for the local Nusselt number and the temperature 
distribution by considering an isothermal wall and constant heat flux at the microchannel walls. In 
microchannels the main factors for heat transfer appeared to be the viscous dissipation and Joule 
heating. In case of an electroosmotic flow with weaker electrical double layer, the Joule heat 
becomes significant compared to the viscous dissipation as Joule heating occurs over the entire 
volume whereas the viscous dissipation is entirely restricted within the electrical double layer which 
is a small region adjacent to surface (Horiuchi and Dutta [2004]).  This simplified analysis have 
been used extensively for theoretical studies in microchannel heat transfer.  

  Although initially these studies were restricted to the Newtonian fluids, but the importance 
of microfluidics in the field of biosciences opens up a new regime which is EOF of non-Newtonian 
fluids and have drawn much attention in recent times (Zhao and Yang [2013]). Most commonly, the 
biofluids that are used for analysis and detection schemes are blood or DNA solutions, which shows 
viscoelastic behavior and have different flow characteristics than that of Newtonian fluids (Park and 
Lee [2008a,b]). In addition to this, particular interest was also shown towards the thermal 
characteristics of electroosmotic flow of non-Newtonian fluids (Sadeghi et al. [2010, 2011], 
Escandon et al. [2011, 2013], Sanchez et al. [2013], Yavari et al. [2013], Goswami et al. [2016]). 
Sadeghi et al. [2011] have studied the heat transfer due to a fully developed electroosmotic flow of 
Phan-Thien-Tanner (PTT) and FENE-P viscoelastic fluids under the Debye-Huckel linearization 



and shown that the viscous dissipation effect is important for low values of viscoelastic parameter 
and Debye layer thickness. Escandon et al. [2011] studied the conjugate heat transfer in a 
microchannel considering the flow of PTT fluid under the combined influence of electroosmotic 
and pressure forces. As a follow up, a lubrication theory based thermal analysis of PTT fluids are 
performed by Bautista et al. [2013] considering temperature dependent viscosity, viscoelastic 
relaxation parameter and liquid conductivity. Coelho et al. [2012] obtained an analytical expression 
for heat transfer in fully developed channel flow of simplified Phan-Thien-Tanner fluid with 
constant physical properties under electroosmotic and pressure forces. As far as our concern, in 
theoretical frameworks the heat transfer characteristics for viscoelastic fluids are mostly carried out 
for thermally fully developed flow and very little interest were shown towards thermally developing 
flows. Therefore, in this study we will focus on the thermally developing flow of viscoelastic fluids 
under electroosmotic forces.  

  In this study, we investigate the temperature distribution, heat transfer coefficient and the 
Nusselt number for a steady electroosmotic flow of viscoelastic fluid in a slit microchannel.  
Considering a thin electrical double layer adjacent to the surface, an analytical expression for the 
velocity profile is obtained for a viscoelastic fluid, which is further approximated by a Helmholtz-
Smoluchowski (HS) type slip velocity close to the wall. In thermal analysis, the walls are assumed 
to be isothermal or maintain a constant heat flux. In the energy equation, the effect of Joule heat is 
considered explicitly together with the advective and diffusive terms. Since we are confined our 
study within the thin EDL regime, the effect of viscous dissipation is neglected. A simplified model 
for energy equation based on the HS slip velocity is solved to quantify the heat transfer 
characteristics for a thermally developing flow of viscoelastic fluid. 

 
THEORETICAL FORMULATION 

 

Electric Potential distribution Consider the electroosmotic flow of a viscoelastic fluid in a parallel 
plate microchannel having height 2H and length L, where L>>H (as depicted in Figure 1). The fluid is 

presumably an electrolyte solution having constant density and permittivity. The surfaces of the 
microchannel exhibit ionic properties in presence of the fluid and creates an electrical double layer 
(EDL) adjacent to the surface. When an electric field is applied, the ionic imbalance within the EDL 
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Figure 1: Schematic of the problem considered. The microchannel walls are isothermal or 
subjected to constant heat flux. 

2H 



produces a strong electromotive force which results in an overall dragging of the fluid along the 
channel. This dragging of liquid is referred as the electroosmotic flow. For simplicity, we consider a 
symmetric (z:z) electrolyte. The co-ion and counter-ion number densities n  are given by the 
Boltzmann distribution  0 / Bn n Exp ez k T   , where, 0n represents the bulk concentration of the 

ions,  represents the EDL potential, e is the elementary charge, z is the valence of the ions, Bk  is 

the Boltzmann constant, and T  is the absolute temperature. The total ionic charge density is given 

by  e ez n n    which is related to the EDL potential distribution  by the Poisson equation 
2

e     , where   is the permittivity of the medium. The potential at the surface of the 

microchannel is often characterized by a zeta potential  . For /Bk T ez  , a Debye-Hückel 

approximation can be employed to obtain a simplified form of the Poisson equation, which reads  

 2 2     (1) 

where 1   represent the characteristic EDL thickness and is given by 2 = 2 2
0(2 ) / ( )Bn e z k T . In the 

present configuration, the solution of the above equation (1) can be obtained by employing a 
symmetry condition at the channel central line, i.e., / 0d dy   at 0y   and a specified zeta 
potential at the wall, i.e.,    at y H . The solution of (1) is given by 

 cosh( ) / cosh( )y H     (2) 

Equation (2) provides the potential distribution within the microchannel under thin EDL 
approximation. 

 

Velocity profile An externally applied electric field, xE , in the channel x-direction causes an 

electroosmotic body force e xE , which drives the electrolyte solution in the direction of the electric 

field. The dynamics of the fluid is governed by the mass conservation and the Cauchy equation of 
motion 
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where τ  represents the viscoelastic stress tensor for a simplified Phan-Thien-Tanner fluid. In case 
of a steady fully developed flow the stress components are given by 
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From (3) and (4), with the condition 0xy  at 0y  , one can readily obtain 
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. Integrating equation (5) and using the no-slip boundary condition 0u   

at y H , gives the velocity profile as 
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In this analysis, we consider the cases of a linear-PTT (LPTT) model and an exponential-PTT 
(EXPTT) model for the fluid. Accordingly, the function  xxf  can be given in the form 
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where  is the fluid viscosity,  is the relaxation parameter and is the extensibility parameter. Using 
(7), from (6), the velocity profiles are obtained as 
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where the Deborah number xE
De
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To obtain a Helmholtz-Smoluchowski type slip velocity for the above flows, we consider that the wall 
is located at 0Y   and far from the wall the velocity reaches a maximum uniform value LPTT

HSU  

( EXPTT
HSU ) for a linear-PTT (exponential-PTT) fluid . In typical microchannel flows the EDL potential 

 decreases exponentially from   to 0 over the distance 1  from the wall. Since, 1   is much smaller 
than the channel dimension, Y  represents a relative value for the EDL thickness. A large value of 

Y represents a thinner EDL and the vice versa. Therefore, the EDL potential  can be approximated 
as [ ]Exp Y    . Using this potential distribution in (6) together with the boundary conditions 

/ 0du dy   as Y  and 0u  at 0Y  gives the velocity profiles as 
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Now employing the condition LPTT
HSu U or EXPTT

HSU as Y  gives the slip velocities of the form 

  

2

2

2

2
1

3

2

2 2

LPTT x
HS

EXPTT x
HS

E
U De

Erfi DeE
U

De

 


 
 

    
 

 

 (10) 

In equation (10), as 2 0De  both are reduces to the Helmholtz-Smoluchowski slip velocity for a 
Newtonian case. 



Temperature profile  For a steady electroosmotic flow, the temperature distribution ( , )T x y within 
the fluid medium is governed by the equation 

 
2 2

2
2 2

( )f P f xy b x
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where f is the fluid density, Pc is the specific heat capacity, fk is the thermal conductivity, b  is the 

electrical conductivity of the bulk fluid. The term xy

du

dy
   and 2

b xE represents the volumetric heat 

generation due to viscous dissipation and Joule heating, respectively. As the velocity and potential 
gradient are mostly occurred within the EDL region, the variation of the viscous dissipation term is 
bounded within the EDL, whereas the Joule heating occurs throughout the channel. The viscous 
dissipation term has an order of magnitude 2 2 2 2/xE H   and Joule heating is in the order of 

2
b xE .  In typical electroosmotic flows the parametric values considered are: 10 2 -1 -110 C ×J ×m  ,  

10 25mV   , 3 -210 N×s×m  , 4 610 10 mH    and 3 -110 S×mb
 . For a given electric field 

xE , an order analysis shows that, the Joule heating term is much larger than the viscous dissipation 

term and may be dropped from equation (11) (Horiuchi and Dutta [2004]). Further neglecting the near 
wall velocity gradient and approximating the velocity by a uniform profile HSU  , equation (11) can be 

written in the simplified form 
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fluid. To solve equation (12), the boundary conditions considered  here are  
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Here, 0T  is the inlet temperature, WT  is the temperature at the wall and Wq  is the constant wall flux. 

Using the non-dimensional variables /x H  , /y H  ,    0 0/ WT T T T    , equation (12) can 

be written in the form  
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whereas the boundary conditions (13) takes the form 
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where /T f P HS fPe c U H k is the thermal Peclet' number,  2 2
0/b x f WJ E H k T T  is the non-

dimensional Joule heat and  0/W W f WQ q H k T T    is the non-dimensional wall heat flux. To solve 

(14) with the boundary conditions (15), we employ the Laplace transform in  , which reduces the 
above equations in the form 
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where  
0

ˆ ,se d   


    and 2 ( )TPe s s   . Solving (16) one can get the temperature profile in 

the Laplace transform domain as 
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Inverting (17) and using the residue calculus, the temperature profile for isothermal condition is 
obtained as 
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flux the temperature distribution becomes 
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where  2 2 21
4

2n T T nPe Pe       and n n  . 

A numerical method based on the Fourier series approximation is also employed to invert equation 
(17) (Rice and Do [1995]). The analytical expressions obtained in equation (18) and (19) are matches 



exactly with the numerical solution. Based on this analytical treatment we have outlined the 
expressions for the local Nusselt number below. 

Nusselt number  The mean temperature can be obtained as 
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Using the mean temperature we can write the local Nusselt number in the form / fNu h H k  , where 

h  is the local heat transfer coefficient and is given by 
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Therefore, the expressions for the local Nusselt number Nu , for an isothermal condition can be 

written in the form 
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whereas for constant wall heat flux conditions this can be written as 
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From the expressions (22) and (23), we can identify the dependence of the viscoelastic behavior of the 
fluid through the parameter  . 

 

RESULTS AND DISCUSSIONS 

 

Velocity profile:  In typical electroosmotic flows, the values for dimensional parameters for biofluids 
may be considered as 3 310 /f kg m  , 2 110 10 .Pa s    , 3 110 10 s    , 0.01 0.1   , 

10 210 /C Jm  , 4 510 10 /xE V m  , 2 110 10 /b S m    , 25mV  . With these considerations 

the typical strength of the velocity 4 310 10 /HSU m s    and characteristic Debye length 
1 7 810 10 m      (Matias et al. [2015], Xuan et al. [2004b], Curtin et al. [2006], Sun and De Kee 

[2001]). In this study, we have considered the non-dimensional values according to the reported 
parametric values in the literature. To adjudicate our simplification as given in equation (10), we depict  
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Figure 2: The non-dimensional velocity profile for an electroosmotic flow of linear Phan-Thien-
Tanner fluid. (a) Non-dimensionalized with HSU  (Helmholtz-Smoluchowski slip velocity for a 

Newtonian fluid) for different values of the viscoelastic parameter 2De . The non-dimensional 
EDL thickness is considered as 10H  . Dashed lines denotes the HS slip velocity /LPTT

HS HSU U . 

(b) Non-dimensionalized with LPTT
HSU  for different values of the EDL thickness parameter and 

2 1De  . 
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Figure 3: The non-dimensional velocity profile for an electroosmotic flow of exponential Phan-

Thien-Tanner fluid. (a) Non-dimensionalized by HSU  (Helmholtz-Smoluchowski slip velocity for a 

Newtonian fluid) for different values of the viscoelastic parameter 2De . The non-dimensional 
EDL thickness is considered as 10H  . Dashed lines denotes the HS slip velocity /EXPTT

HS HSU U . 

(b) Non-dimensionalized with EXPTT
HSU  for different values of the EDL thickness parameter and 

2 1De  . 
 
the velocity profile from equation (8) (denoted by solid lines) together with equation (10) (denoted by 
dashed lines) in case of a linear-PTT fluid in Figure 2(a) and exponential-PTT fluid in Figure 3(a), for 
different values of the viscoelastic parameter 2De , where both the velocities are non-dimensionalized 
by HSU . The increase in 2De is corresponds to the increasing shear thinning behaviour of the fluid, 

which result in less viscous resistance and hence an increasing velocity is observed from figure 2(a) 
and 3(a). The velocity is much higher for exponential-PTT fluid compared to the linear-PTT fluid, 
which is the direct consequence of linearizing the exponential function  /xxExp   . In Figure 

2(b) and 3(b), we have plotted the ratios /LPTT LPTT
HSu U  and /EXPTT EXPTT

HSu U , respectively, for 



different values of the EDL thickness parameter. As the EDL thickness parameter increases, due to 
the thinner EDL adjacent to surface, a sharp gradient is observed near the wall and maintains a 
uniform nature outside the EDL, as seen in typical electroosmotic flows. Therefore, outside the 
EDL region, the velocity profiles can be approximated as LPTT LPTT

HSu U  and EXPTT EXPTT
HSu U . In this 

study, we have restricted ourselves to the thin EDLs. This consideration may have different 
advantageous features in studying the thermal characteristics of an EOF of viscoelastic fluid. 
Because of an almost plug-like velocity profile, the viscous dissipation will have negligible effect 
(Horiuchi and Dutta [2004]) on the thermal development. Secondly, since the EDL is very thin a 
larger column of fluid will be exposed nearer the walls and hence will result in more advective 
thermal transport. Therefore, in the next sub-section we have discussed the thermal characteristics 
of almost a plug-like EOF of viscoelastic fluids. 
  

Temperature profile  In Figure 4(a-b), we have made a comparison between the numerical Laplace 
inversion and analytical solution of equation (10) for different values of the thermal Peclet' number. 
Figure 4(a) gives the temperature profile for an isothermal case whereas figure 4(b) represents the case 
of constant wall heat flux in case of an exponential-PTT fluid. The Joule heat parameter, viscoelastic 
parameter and the non-dimensional value of the heat flux are considered as 1J  , 2 1De   and 

1WQ  . In isothermal case the temperature reaches to an asymptotic value, whereas in case of 

constant heat flux it keeps on increasing. The reason is quite obvious, in isothermal condition the 
walls are fixed at a temperature together with a specified inlet temperature and Joule heat, which 
enables the system to reach at an equilibrium point. But, in case of constant heat flux the walls are 
under continuous heating, which results in increasing fluid temperature. To track this increment, we 
have plotted the difference between the wall temperature and the temperature at different heights of 
the microchannel, that is the quantity    ,1 ,    with respect to  , in Figure 5(a) at different 

axial location   and 1TPe  . As the flow progresses, the difference reaches to a maximum value of 

0.5 at a distance 10   from the channel entrance. To identify the effect of the viscoelastic 
parameter on the temperature difference, we fix up the axial location at 1   and plotted the 

quantity    ,1 ,    with respect to  , in Figure 5(b) for different values of  2De . For small 

values of 2De , the difference almost reaches the value 0.5, but with increasing 2De the 
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Figure 4: The non-dimensional temperature profile  ,  with respect to the non-dimensional 
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difference decreases. The increase in 2De eventually increases the fluid velocity by virtue of the 
shear-thinning behaviour of the fluid, which in turn increases the advective heat transfer by the 
fluid. At the specified location , 1  , the temperature does not reaches to its fully developed state 
and hence require a larger length to reach the value 0.5. A similar behaviour is also seen in case of a 
linear-PTT fluid. 

 In Figure 6(a) we present a comparison for the temperature distribution between a linear-PTT fluid 
and an exponential-PTT fluid in case of isothermal walls. The heat transfer due to an exponential-PTT 
fluid within the microchannel is larger compared to the linear-PTT fluid. For small thermal Peclet 
number TPe  the centreline temperature reaches to a maximum value from the wall temperature 

 ,1 1  . As the value of TPe  increases, the maximum value decreases. A small TPe corresponds 

to the lower advective heat transport due to the fluid flow, so this increment is from the Joule heat 
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and wall temperature. In case of larger TPe  number, there is a significant contribution from the 

advective transport which balances out the heat rise due to Joule heat and wall temperature and 
hence a decrease in the centreline temperature. When looked into (Figure 6(b)) the temperature at 
different entrance length   of the channel, initially the temperature decreases from its wall 

temperature  ,1 1  to a minimum value. The case considered in Figure 6(b) is for 10TPe  . At 

small values of  , the fluid does not get enough length to develop the heat within the system via the 
advective transport. But as   increases, the temperature reaches to a maximum value. In this case, 
the temperature reaches to the value 1.5 at all values of   greater than 100. A similar behaviour can 
also be seen for variation in the viscoelastic parameter. In Figure 7(a-b), we have shown the 

temperature distribution for linear-PTT and exponential-PTT fluid at different values of the 
viscoelastic parameter at an axial location 5   and 10TPe  . In case of a linear-PTT fluid (Figure 

7(a)), the increase in 2De , increases the advective transport of heat by virtue of an increasing plug 
velocity of the fluid. This increment is much larger for an exponential-PTT fluid (Figure 7(b)) 
compared to linear-PTT fluid. Because of the higher plug velocity, the advective transport is 
become dominant over Joule heat and the fluid temperature decreases sharply from its maximum 
value 1 to 0 at the central line, which is the non-dimensional inlet temperature. 

CONCLUSIONS 

In this study, we have obtained an analytical solution for the heat transfer coefficient in 
electroosmotically driven viscoelastic flow (linear-PTT fluid and exponential-PTT fluid) in parallel 
plate microchannel. First, we have derived an analytical solution for the EOF of viscoelastic fluid and 
approximated by a Helmholtz-Smoluchowski type slip velocity. Using this HS-slip velocity, we have 
reduced the energy equation and solved it by Laplace transform method. Two types of boundary 
condition is used, isothermal wall and constant wall heat flux. In inverting the expressions for 
temperature, we employed residue calculus to obtain the analytical solution and a Fourier series based 
method for the numerical solution. The analytical solution for the temperature profile exactly matches 
with the numerical solution. We have also obtained the analytical expression for the local Nusselt 
number for both isothermal and constant wall heat flux conditions. The increase in viscoelastic 
parameter increases the plug velocity which in turn increases the net advective heat transfer within the 
microchannel. This advective transport is larger for exponential-PTT fluids compared to linear-PTT 
fluids.  
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