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ABSTRACT  The Generalized Integral Transform Technique (GITT) is a well-established tool in the 

hybrid numerical-analytical solution of various classes of nonlinear diffusion and convection-diffusion 

problems. Quite recently, a variant in the GITT approach has been advanced, based on retaining the 

original nonlinear operator coefficients in the eigenvalue problem proposition, and has been 

demonstrated in diffusion problems with nonlinear boundary conditions, illustrating the relative gains 

in convergence enhancement. The present work further demonstrates this nonlinear eigenvalue 

problem path in the GITT approach, by considering a mass transfer application of metal extraction 

through a polymeric hollow fiber membrane with diffusive separation. The methodology is here 

illustrated for this convection-diffusion problem with nonlinear boundary condition coefficient. The 

novel approach is then critically compared to the methodology employing a linear eigenvalue problem 

basis, for typical parametric values, but with an alternative convergence enhancement approach based 

on a nonlinear filter, so as to also demonstrate its convergence enhancement effect, with an eventually 

increased computational effort for a fixed truncation order. 

 

 

NOMENCLATURE 

 

C  dimensionless concentration 

C  integral transformed concentration  
*C  dimensional concentration, mol m

-3
 

*

iC          initial solute concentration, mol m
-3

  

D  diffusivity of solute in the fluid phase, m
2
 s

-1 

H  equilibrium distribution coefficient of solute concentration in the membrane to that in 

the fluid 
*h  dimensionless slope of the distribution coefficient, m

3
 mol

-1
  

oh  distribution coefficient for infinite solute dilution 

mk  membrane permeability coefficient, m s
-1 

R  inner radius of hollow fiber, m 

oR  outer radius of hollow fiber, m 

r  dimensionless radial coordinate 



*r  dimensional radial coordinate, m 

s  hollow fiber shape factor 

wSh  wall Sherwood number 

U dimensionless velocity profile 

v  average fluid velocity, m s
-1 

z  dimensionless axial coordinate  
*z  dimensional axial coordinate, m 

 

Greek symbols 

  dimensionless slope for a variable distribution coefficient 

,   eigenfunction 

,   normalized eigenfunction 

,   eigenvalues 

Subscripts and superscripts 

e entrance position 

f filter solution 

i,j,l,m order of eigenvalues and eigenfunctions 

h homogeneous solution 

 

 

INTRODUCTION 

 

The Generalized Integral Transform Technique (GITT) is a well-established tool in the hybrid 

numerical-analytical solution of various classes of linear and nonlinear diffusion and convection-

diffusion problems, (Cotta [1990], Cotta [1993], Cotta [1994], Cotta & Mikhailov [1997], Cotta 

[1998], Cotta & Mikhailov [2006], Cotta et al. [2015]). In most of the previous implementations of this 

approach, linear eigenvalue problems have been proposed in providing the basis of the eigenfunction 

expansions, inherent to this class of method. Typically, the original nonlinear problem formulation is 

first rewritten by retaining characateristic linear coefficients in the transient, diffusive, and dissipation 

operators of the partial differential equations, while transporting the remaining nonlinear terms to an 

enlarged nonlinear equation source term. Again, the same formulation interpretation is adopted in case 

that nonlinear boundary conditions are present. Then, such characteristic equation and boundary 

condition linear coefficients, naturally lead to the eigenvalue problem choice to be employed in 

constructing the expansions. Quite recently, a variant in the GITT approach has been advanced, based 

on retaining the original nonlinear operator coefficients in the eigenvalue problem proposition, Cotta et 

al. [2015] and Cotta et al. [2016]. This methodology has been demonstrated in diffusion problems with 

nonlinear boundary conditions, Cotta et al. [2016], clearly illustrating the relative gains in convergence 

enhancement, in comparison to other alternative schemes such as filtering and integral balances. 

 

The present contribution further advances this nonlinear eigenvalue problem path in the GITT 

approach, by proposing the analysis of a convection-diffusion mass transfer problem, related to the 

metal extraction process through polymeric hollow fiber membranes with diffusive separation. The 

novel approach is then critically compared to the methodology employing a linear eigenvalue problem 

basis, for typical parametric values, but employing a nonlinear filter scheme for convergence 

enhancement. The aim is to demonstrate the convergence enhancement achieved by both approaches, 

with some applicability advantages allowed for by the nonlinear eigenvalue problem approach. 



In this study of hollow-fiber membranes, the GITT methodology is also employed in analyzing the 

influence of the governing parameters on the mass separation process in tubular membranes. In this 

class of extraction processes, liquid extractants are used in the pores of the fiber membrane to facilitate 

the mass separation. Comparisons were also made with results from the literature in order to verify the 

implementation and demonstrate the potential of this technique in dealing with such nonlinear 

problems. 

 

 

PHYSICAL PROBLEM 

 

Membranes are synthetic structures that can promote the separation of two or more phases, restricting 

the transport of many chemical species and selectively transporting other species [Porter 1990]. They 

have application in several areas, such as, dialysis, metal extraction, non dispersive solvent extraction, 

gas separation, artificial oxygenation, and removal of pollutants from industrial waste streams [Urtiaga 

et al. 1992]. 

 

There is great interest in the study of supported liquid membranes because they can promote the 

selective separation of a solute between two aqueous solutions. The procedure consists in 

immobilizing an organic liquid (solvent) in the micropores contained in the pores of the membrane 

to promote the transfer of the solute by the membrane through diffusion, accompanied or not of 

chemical reaction [Urtiaga et al. 1992; Kim and Stroeve 1988, 1990; Cardoso et al. 2009]. 

 

The problem that will be analyzed in this work was proposed by Urtiaga [1992] and consists of a 

separation process in a module of supported liquid membranes. The analysis of the performance of the 

separator will be performed based on the study of only one membrane, assuming that the others present 

similar behavior. A schematic diagram of the hollow fiber membrane is shown in Figure 1. 

 

 

 
Figure 1. Diagram of the hollow fiber membrane with the solute fluid stream 

 

The mathematical model was obtained from the mass conservation equations assuming fully developed 

one-dimensional laminar flow of a Newtonian fluid containing the solute to be separated. The fluid 

enters the separator with known concentration 
*

eC  and the separation process starts at z = 0, where the 

fluid comes into contact with the supported liquid membrane. The solute permeates through the liquid 

membrane by diffusion and on the outside of the fiber reacts instantaneously with the stripping 

solution, so that its concentration is equal to zero. The distribution coefficient H is a very important 

parameter of this mass transfer process, and it is defined as the equilibrium distribution ratio of the 

solute concentration in the liquid membrane to the concentration in the fluid side. In this work, the 

distribution coefficient will be considered as a linear function of the concentration potential of solute in 

the aqueous phase,   1, 1 (1, )H C z C z  . The axial diffusion effect is neglected compared to axial 
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convection and radial diffusion. The dimensionless mathematical model proposed by [Urtiaga et al. 

1992] is given by: 
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Eq. (1.c) represents the symmetry condition at the channel centerline, while Eq. (1.d) imposes the 

continuity of solute flux across the membrane-fluid interface. Eq. (1.d) is a nonlinear boundary 

condition and, therefore, makes it unlikely to obtain a fully analytical solution for this problem. In this 

case, a robust numerical or hybrid numerical-analytical method should be employed to obtain an 

accurate solution of the problem. 

 

 

SOLUTION METHODOLOGY 

 

Nonlinear Eigenvalue Problem  

 

As an alternative to classical numerical methods, the hybrid method known as the Generalized Integral 

Transform Technique (GITT) will be used to construct the solution of the given problem. The GITT is 

a technique that consists of representing the desired potential as an expansion of orthogonal 

eigenfunctions defined from an eigenvalue problem that incorporates as much as possible the spatial 

operators of the original problem formulation. This same problem has been previously solved by the 

GITT [Cardoso et al. 2009], in its usual form, by choosing a linear eigenvalue problem as a basis for 

the eigenfunction expansion, thus avoiding the inclusion of the nonlinear boundary condition in its 

formulation. Then, from application of Green´s second identity, the contribution of the nonlinear 

boundary source term reappears in the transformed ordinary differential system. Besides, in [Cardoso 

et al. 2009], the most direct approach was employed, without the adoption of an analytical filtering 

solution, aimed at improving convergence of the proposed expansion. Nevertheless, the final numerical 

results were demonstrated to be fully converged to four significant digits at least, but at the cost of 

large truncation orders in the infinite eigenfunction expansions. 

 

Here, a recently introduced alternative approach [Cotta et al. 2016], based on the adoption of a 

nonlinear eigenvalue problem, will be further investigated. A natural eigenvalue problem choice can 

be derived from separation of variables applied to the partial differential equation (1.a), including 

the nonlinear boundary condition, in the form: 

 



  2 ( ) ( ; ) 0i
i ir z rU r r z

r r
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This eigenvalue problem, equation (3.a), has a known analytical solution given in terms of special 

functions, and in principle, the solution procedure could follow this path. However, there is some 

computational advantage in adopting a simpler eigenvalue problem formulation, but still 

incorporating the nonlinear boundary condition information. Following this alternative, the 

following nonlinear eigenvalue problem is employed: 
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2

2
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r
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                                              (4.a) 
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Making use of the orthogonality properties of the eigenfunctions, it is then possible to define the 

following integral transform pairs: 

 

    
1

0

( ; ) ,i iC z r z C r z dr           transforms (5.a) 

    
1

1
, ( ; )

( )
i i

i i

C r z r z C z
N z





          inverses (5.b) 

 

where the eigenfunctions ( ; )i r z  are given by the solution of the eigenvalue problem above, 

eqs.(4). This problem has a known analytical solution given by: 

 

   ( ; ) cosi ir z z r    (6.a) 

 

with Ni(z), the normalization integral, given by: 
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 
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The eigenvalue problem proposed is typical of diffusion problems in Cartesian coordinates, but it 

was chosen to allow an analytical solution for integrals obtained during the integral transformation 

procedure, thus avoiding costly numerical integrations. The eigenvalue problem of eqs.(3) would 

result in hypergeometric functions that would most certainly require numerical integration. 

 

The integral transformation of eq.(1a) is accomplished by applying the operator  
1

0

( ; ) .i r z dr  and 

making use of the boundary conditions given by eqs. (1c-d) and (4b-c), yielding the transformed 

system of ordinary differential equations below: 
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The inlet boundary conditions in the z variable given by eq. (1b) are transformed through the 

operator  
1

0

( ; ) .i r z dr , to provide: 

 

  0i iC F   (7.d) 

 

where: 

 

 
1

0

( ;0)i iF r dr    (7.e) 

 

For the solution of the infinite coupled system of nonlinear ordinary differential equations given by 

eqs. (6), one usually needs to make use of numerical algorithms, after the truncation of the system 

to a sufficiently large finite order. For instance, the built-in routine NDSolve of the Mathematica 

system, Wolfram [2015], may be employed, which is able to provide accurate solutions under 

automatic absolute and relative errors control. Then, the inversion formula can be recalled to yield 

the concentration field representation at any desired position r and z. 

 

Replacing the solution, eq. (6.a), obtained for the eigenfunction ( ; )i r z , into the nonlinear 

boundary condition, eq.(4.c), one may reach a transcendental equation for  i z : 

 

           1 1, cos 0i i w iz sin z Sh C z z         (8.a) 

 

Taking the derivative of eq. (8.a), it is possible to achieve an ODE system for  i z , in the form: 
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where: 
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The inlet conditions for this ODE system, eqs. (8.b-c), can be obtained by the evaluation of equation 

(8.a) at z = 0. It can also be highlighted that at z = 0, there is a prescribed concentration inlet 

condition, but when computing the eigenvalues for this inlet condition, the inverse formula for the 

concentration should be employed in eq.(8.a), to be consistent with the substitution performed in 

deriving eq.(8.c) for its derivative evaluation. 

 

Nonlinear Filter Solution 

 

As an alternative to the nonlinear eigenvalue problem methodology, the GITT can be directly 

applied to the original problem defined by eqs. (1), considering, as usual, a linear eigenvalue 

problem, as first proposed by [Cardoso et al. 2009]. However, this approach requires a large amount 

of terms in the series solution, especially if no convergence enhancement scheme is adopted, since 

the eigenvalue problem does not include the nonlinear boundary condition term, which reappears as 

a source term in the transformed system. Employing a nonlinear (or implicit) filter solution can be a 

very effective solution strategy to account for the nonlinear source term and avoid a slower 

convergence behavior of the eigenfunction expansion [Cotta & Mikhailov 1997]. In order to remove 

the nonlinearity of the boundary condition (Eq. 4.c), the following nonlinear filter solution has been 

proposed: 

 

 ( , ) ( , ) ( ; )h fC r z C r z C r z    (9) 

 

where ( , )hC r z  is the homogeneous potential solution and ( ; )fC r z  is the nonlinear filter solution. 

The filter solution is then obtained from the following problem formulation: 
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The problem defined by Eqs (10) has analytical solution given by: 
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Eq. (11) establishes an explicit nonlinear relationship between the filter and the homogeneous 

problem concentration at 1r  , for the particular form of the boundary source term here analyzed. 

Note that there will be a real solution corresponding to the filter only if 1 4 (1, ) 0hC z  . 

 

After finding the filter solution, the problem to determine the homogeneous potential can be analysed, 

which is defined by the following equations: 
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where 
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As it can be observed from eqs.(12), application of the nonlinear filter results in a filtered linear and 

homogeneous boundary condition, while a nonlinear source term is created in the partial differential 

equation (12.a). The traditional GITT methodology can now be applied to this homogeneous problem 

with a linear boundary condition at 1r  . For this purpose, the following linear eigenvalue problem 

was chosen in order to provide the basis for the expansion of the homogeneous potential in terms of 

orthogonal eigenfunctions: 
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The eigenvalue problem above defined has analytical solution in terms of Laguerre polynomials: 
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However, the Laguerre polynomial leads to some difficulty in obtaining analytical expressions for the 

integrals that appear due to the integral transformation of Eq. (12.a). Therefore, as in the previous 

section, the GITT itself can be applied to obtain a solution to the original eigenvalue problem, when the 

eigenfuctions can be expressed by eigenfunction expansions based on a simpler auxiliary 

eigenvalue problem, for which exact analytic solutions are readily available. Thus, the following 

simpler auxiliary eigenvalue problem is proposed: 
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The analytical solution for ( )l r  is given as: 

 

  ( ) cosl lr r    (16.a) 

 

The eigenvalues l  can be calculated from the transcendental equation obtained by substituting the 

eigenfunction in the boundary condition (15.c): 

 

    sin cos 0l l w lSh       (16.b) 

 

From the orthogonality property of the eigenfunctions, the transform and inverse formulae for the 

original eigenfunctions   can be written as: 
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where il  are eigenvectors that will be obtained from the integral transform solution of the 

eigenvalue problem defined in Eqs. (13), and  l r  is the normalized eigenfunction: 
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Eq. (13a) is now operated on with   
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.l r dr , to yield the transformed algebraic eigenvalue 

system: 
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Equations (18) form an infinite algebraic system that can be numerically solved for a sufficiently 

large truncation order MT to ensure the necessary accuracy for the eigenvalues i . The norms of 

the eigenfunctions  i r  are then computed as: 
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After the eigenvalue problem solution, the transform and inverse formulae for the homogeneous 

concentration can be defined, as: 
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where ( , )i Y Z  is the normalized eigenfunction defined as: 
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The integral transformation of Eq. (12.a) is accomplished by applying the operator   
1

0

.ir r dr  

and making use of the boundary conditions given by Eqs. (12.c-d) and (13.b-c), yielding the 

transformed system of ordinary differential equations: 
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The inlet boundary conditions given by eq. (12.b) are transformed through the operator 

   
1

0

( ) .irU r r dr , to provide: 

 

    
1

,

0

0 ( ) ( ) 1 ( ;0)h i i fC r r U r C r dr     (20.c) 

 

Equations (20) form a nonlinear and coupled system of ordinary differential equations that must be 

solved numerically by appropriate computational routines, such as the NDSolve intrinsic function of 

the Mathematica system [Wolfram, 2015]. After the numerical solution procedure is concluded, the 

concentration profile is built through its respective inversion formulae and the proposed nonlinear 

filter solution. After the solution of the concentration field is available, the average solute 

concentration along the channel can be analytically derived through the following relation: 
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RESULTS 

 

The results presented in this section were obtained through a mixed symbolic-numerical 

computational routine built on the Mathematica v.10 platform, Wolfram [2015], and employing the 

subroutine NDSolve for the solution of the nonlinear  transformed ODEs systems, eqs.(7) and 

eqs.(20). Numerical results were generated through the two solution schemes explored in this work 

and are compared with results available in the literature as a way of numerically verifying the 

developed computational code. 

 

Tables 1.a,b present the convergence behavior of the dimensionless average solute concentration at 

different positions along the z direction and for different truncation orders NT of the concentration 

eigenfunction expansion, with different values of the governing parameters, 
wSh    and   , and 

wSh   and   , respectively. The truncation order of the transformed ODE system was kept at 

the larger value of N=NT+20, so as to warrant that the transformed concentrations were fully 

converged while the present convergence analysis was undertaken for the average concentration 

behavior. At the last line, the numerical results obtained through the GITT without filtering or any 

convergence enhancement scheme [Cardoso et al. 2009], but with very high truncation orders (NT 

up to 1000), are also presented. The present solution with nonlinear eigenvalue problem provides a 



quite considerable convergence improvement over the previous GITT implementation [Cardoso et 

al. 2009], yielding at least six fully converged significant digits in the axial variable range analyzed 

and with truncation orders as low as NT=40. Also, the present solution with a nonlinear eigenvalue 

problem was chosen to be carried out without applying a filter, so as to analyze only the relative 

gain of incorporating the full nonlinear boundary condition into the eigenvalue problem 

formulation. The solution obtained through the GITT with nonlinear filter has also achieved an 

impressive convergence rate, reaching 4 to 6 converged significant digits up to this maximum 

truncation order of NT=60 terms. It should be recalled that a simpler auxiliary eigenvalue problem, 

typical of a diffusion problem in the Cartesian coordinates system has been considered, and its 

truncation order was kept at the larger value of N=NT+20, so as to warrant that the eigenvalues were 

fully converged, while the present convergence analysis was undertaken for the average 

concentration behavior. Both sets of results are in excellent agreement with the previous GITT 

results with large truncation orders [Cardoso et al. 2009]. 

 

Table 1.a 

Convergence behaviour of the average concentration  avC z  for 
wSh    and   . 

GITT with Nonlinear Eigenvalue Problem 

NT z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2 

10 0.983595 0.877728 0.787327 0.590917 0.397553 0.218047 

20 0.983595 0.877728 0.787327 0.590917 0.397552 0.218047 

30 0.983595 0.877727 0.787327 0.590917 0.397552 0.218047 

40 0.983594 0.877727 0.787327 0.590917 0.397552 0.218047 

50 0.983594 0.877727 0.787327 0.590917 0.397552 0.218047 

60 0.983594 0.877727 0.787327 0.590917 0.397552 0.218047 

GITT with Nonlinear Filter 

NT z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2 

10 0.983645 0.877751 0.787343 0.590924 0.397554 0.218046 

20 0.983602 0.877731 0.787329 0.590918 0.397552 0.218046 

30 0.983597 0.877729 0.787328 0.590917 0.397552 0.218046 

40 0.983595 0.877728 0.787327 0.590917 0.397552 0.218046 

50 0.983595 0.877728 0.787327 0.590917 0.397552 0.218046 

60 0.983595 0.877727 0.787327 0.590917 0.397552 0.218046 

Ref.* 0.9835 0.8774 0.7869 0.5903 0.3970 0.2177 

 

Table 1.b 

Convergence behaviour of the average concentration  avC z  for 
wSh   and   . 

GITT with Nonlinear Eigenvalue Problem 

NT z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2 

10 0.922803 0.636375 0.455896 0.174963 0.035826 0.001508 

20 0.922804 0.636375 0.455895 0.174963 0.035826 0.001508 

30 0.922803 0.636374 0.455895 0.174963 0.035826 0.001508 

40 0.922802 0.636374 0.455895 0.174963 0.035826 0.001508 

50 0.922802 0.636374 0.455895 0.174963 0.035826 0.001508 

60 0.922802 0.636374 0.455895 0.174963 0.035826 0.001508 

GITT with Nonlinear Filter 

NT z = 0.01 z = 0.1 z = 0.2 z = 0.5 z = 1 z = 2 

10 0.923158 0.636510 0.455985 0.174997 0.035833 0.001509 

20 0.922889 0.636408 0.455918 0.174971 0.035828 0.001509 

30 0.922838 0.636388 0.455904 0.174966 0.035827 0.001508 

40 0.922822 0.636382 0.455900 0.174965 0.035826 0.001508 

50 0.922814 0.636379 0.455898 0.174964 0.035826 0.001508 

60 0.922810 0.636377 0.455897 0.174964 0.035826 0.001508 

Ref.* 0.9227 0.6363 0.4558 0.1749 0.0358 0.00150 

(*) [Cardoso et al. 2009] 



 

Table 2 presents a comparison of the dimensionless average concentration values between the two 

hybrid solution schemes explored in this work against available literature data [Urtiaga et al. 1992], for 

different values of 
wSh ,   and z. The GITT results here reported were obtained with a fixed truncation 

order of NT=60, while the truncation order for the transformed system and for the eigenvalue problem 

solutions were held at the fixed value of N=80. One may observe the expected excellent agreement 

between the two converged GITT solutions, which provide a verification of the numerical results of 

[Urtiaga et al. 1992], with an adherence to at least two significant digits in all positions and parameter 

values considered. 

 

Table 2 

 wSh    and     
wSh    and    

z 
Urtiaga et 

al. (1992) 

Nonlinear 

Filter 

Nonlinear 

Eigenvalue 

Problem 

Urtiaga et al. 

(1992) 

Nonlinear 

Filter 

Nonlinear 

Eigenvalue 

Problem 

0.01 0.997937 0.998034 0.998034 0.997739 0.997844 0.997844 

0.1 0.980597 0.980814 0.980814 0.978829 0.979062 0.979062 

0.2 0.961899 0.962186 0.962185 0.958534 0.958842 0.958842 

0.5 0.908104 0.908536 0.908536 0.900555 0.901012 0.901012 

1.0 0.825084 0.825714 0.825714 0.812170 0.812824 0.812824 

2.0 0.682032 0.682032 0.682032 0.660485 0.662879 0.662879 

z 

wSh    and    
wSh  and     

Urtiaga et 

al. (1992) 

Nonlinear 

Filter 

Nonlinear 

Eigenvalue 

Problem 

Urtiaga et al. 

(1992) 

Nonlinear 

Filter 

Nonlinear 

Eigenvalue 

Problem 

0.01 0.995759 0.996195 0.996195 0.982283 0.982961 0.982961 

0.1 0.963544 0.964428 0.964428 0.859620 0.860585 0.860585 

0.2 0.933780 0.931542 0.931542 0.748813 0.749808 0.749808 

0.5 0.840861 0.842418 0.842418 0.499920 0.500057 0.500057 

1.0 0.716369 0.718403 0.718403 0.254408 0.255004 0.255004 

2.0 0.532879 0.535389 0.535389 0.066080 0.066316 0.066316 

z 

wSh  and    
wSh  and    

Urtiaga et 

al. (1992) 

Nonlinear 

Filter 

Nonlinear 

Eigenvalue 

Problem 

Urtiaga et al. 

(1992) 

Nonlinear 

Filter 

Nonlinear 

Eigenvalue 

Problem 

0.01 0.980048 0.981756 0.981756 0.971118 0.973046 0.973046 

0.1 0.851779 0.854148 0.854148 0.811091 0.813065 0.813065 

0.2 0.738177 0.740630 0.740630 0.682304 0.684142 0.684142 

0.5 0.486580 0.488829 0.488829 0.421381 0.422825 0.422824 

1.0 0.245085 0.246757 0.246757 0.198930 0.199924 0.199923 

2.0 0.063000 0.063670 0.063670 0.048622 0.049018 0.049018 

 

 

This comparative analysis is complemented through Figures 2-4, which provide the profiles of the 

dimensionless average solute concentration along the length of the hollow fiber membrane, for 

different values of 
wSh  and  . Again, these GITT results were obtained with a truncation order of 

NT=60 for the transformed system and N=80 for the eigenvalue problem. To the graphical scale, it is 

quite clear that the two hybrid solution schemes here employed are in excellent agreement with the 

previously reported results [Urtiaga et al. 1992]. It is evident that the average concentration of the 

solute is strongly influenced by the values of both 
wSh  and  , but it is also observable that for larger 



values of 
wSh  the variable distribution coefficient plays a less significant role. It should be noted that 

the second alternative solution with nonlinear filtering here adopted leads to a complex domain 

solution for values of   less than zero. For this reason, in the following graphs, there are no curves of 

the nonlinear filter solution for negative values of  . The solution scheme with the nonlinear 

eigenvalue problem does not have this sort of limitation, being valid for any value of  . 

 

 

 
Figure 2. Effect of variable distribution coefficient on dimensionless average solute concentration for 

0.1wSh  . 

 

 

 
Figure 3. Effect of variable distribution coefficient on dimensionless average solute concentration for 

1wSh  . 
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Figure 4. Effect of variable distribution coefficient on dimensionless average solute concentration for 

10wSh  . 

 

CONCLUSION 

 

The integral transform analysis of nonlinear convection-diffusion problems is here considered, further 

advancing a recently introduced alternative approach through the adoption of a nonlinear eigenvalue 

problem in the proposition of the eigenfunction expansions. A mass transfer model related to metals 

extraction with polymeric hollow fiber membranes is examined more closely. The nonlinear boundary 

condition source term is introduced into the eigenvalue problem and simultaneously solved with the set 

of ordinary differential equations for the transformed concentration field. The adopted nonlinear 

eigenvalue problem is in fact a simpler version, typical of diffusion problems in Cartesian coordinates, 

so as to achieve analytical integrations throughout the solution procedure. A second hybrid solution 

through GITT is also implemented in the particular situation here considered, for critical comparisons, 

based on the proposition of a nonlinear filter that eliminates the nonlinearity in the boundary condition 

of the filtered problem, moving this effect to the convection-diffusion equation itself. The use of 

filtering solutions is an important tool in the convergence enhancement of eigenfunction expansions, 

especially when the boundary conditions are made homogeneous by the filter. Both hybrid solution 

schemes, either with the nonlinear eigenvalue problem or with the nonlinear filter, have markedly 

improved convergence rates with respect to the plain GITT solution with a linear eigenvalue problem 

and without any filter, previously implemented with very high truncation orders. The proposed solution 

with a nonlinear eigenvalue problem reaches six significant digits convergence with truncation orders 

as low as 40 terms. The agreement among all three GITT solutions is remarkable, for different values 

of the governing parameters, which have two significant digits agreement with an available purely 

numerical solution of the same problem.  

 

The proposed GITT approach with nonlinear eigenvalue problem then provides a general methodology 

for convection-diffusion problems with nonlinear boundary conditions. It may even be further 

improved in terms of convergence rate, by either considering an eigenvalue problem that incorporates 

all the original spatial operators of the partial differential equation and/or by considering convergence 

enhancement techniques, such as an analytical filtering solution to reduce the importance of the source 

terms. 
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