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ABSTRACT:  The investigation of hydromagnetic flow of a viscous, electrically conducting, 

Casson thin fluid film past an unsteady stretching sheet with variable thermal conductivity, under 

the influence of thermocapillarity and viscous dissipation, for Forchheimer extended Darcy model, 

is carried out. Similarity transformation is used to translate the governing partial differential 

equations into ordinary differential equations. Shooting technique in conjunction with Runge-

Kutta 4th order method is employed to solve the transformed equations. Detailed computations for 

fluid velocity inside the thin film and fluid thin film temperature as well as local skin friction co-

efficient and local Nusselt number, are carried out for a range of values of pertinent flow 

parameters to analyze the physics of the film flow. It is observed that thermocapillarity enhance 

the velocity of fluid near the free surface. The kind of investigation we have done here has got 

various applications in engineering and may have claims in practical problems, namely, Very 

Large Scale Integration of electronic chips, film coating etc. The richness of ideas and phenomena 

discussed in the proposed study can be expected to lead to highly productive interactions across 

disciplines. 
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Introduction:  Fluid thin films can be seen in a variety of situations in nature and in various 

industrial applications viz. membrane in biophysics, tear films in eyes, coating flows, microfluidic 

engineering etc. The ubiquitous presence of thin films in nature and technology has led the 

scientists and researchers to address the mechanism involved in the flow. Despite the diversity of 



 

 

phenomena and applications, the mathematical model is quite similar if the fluid is sufficiently 

viscous. Reynolds (1886) was the first one who pointed out the need to model the dynamics of thin 

film flow, while studying the lubrication theory. Oron et al. (1997), in their review article, 

presented a unified mathematical theory for the macroscopic thin fluid films and discussed linear 

stability of the solution, considering different aspects of the problem. O’Brien and Schwartz (2002) 

considered the flow of semi-infinite uniform liquid layer film past a dry vertical substrate. Thiele 

et al. (2009) presented the analysis of the way in which thin fluid film evolve when the film was 

flowing down an inclined porous wall and discussed stability of the evolution equation and found 

that the substrate porosity tries to destabilize the flow. D’Alessio et al. (2010) studied the 2-

dimensional flow of a thin fluid film, driven by gravity, down a wavy inclined surface which is 

being heated continuously. Flow of liquid thin films over stretching surfaces has garnered a lot of 

attention in current years because of their application in various industrial and engineering 

processes. Food stuff processing, designing of several heat exchangers, polymer processing, fiber 

and wire coating, Large Scale Integration (LSI) and Very Large Scale Integration (VLSI) of 

microchips are some of the examples where the thin liquid films over a stretching surface are 

apparent. Inspired by applications of such flows, a number of researchers devoted their time in 

analyzing the behavior of liquid thin films over a stretching surface, considering various 

characteristics of the problem. Some important research studies on the topic are due to Wang [6], 

Wang and Pop (2006), Dandapat et al. (2007), Liu and Anderson (2008), Santra and Dandapat 

(2009) and Liu and Megahed (2012). 

In nuclear fusion power research, scientists use a device, known as divertor, which allows the 

removal of waste material from the plasma while the reactor is still operating. It has been observed 

that the thin liquid metal film, flowing fast enough may be a good option as a divertor surface for 

surface heat removal, under the hydromagnetic effects. Stimulated by such an application, Narula 

et al. (2003) led an experiment to examine the effects of magnetic field and its temporal and spatial 

gradients on the flow of thin liquid metal film. Hayat et al. (2008) observed in his study that the 

change in fluid velocity in regard to magnetic field is observed at the end of thin film whereas the 

magnetic field has almost no effect in central region of the film. Nadeem and Awais (2008) 

deliberated the influence of variable viscosity on the flow of thin liquid film over a shrinking sheet 

under the influence of magnetic field and analyzed the effects of pertinent flow parameters for 

transient as well as steady state cases. Dandapat et al. (2010) investigated the hydromagnetic thin 

film flow over a non-linearly stretching sheet and derived the evolution equation for film thickness. 

They concluded that the uniform film profile can only be obtained as a result of linear stretching, 

irrespective of the form of initial deposition. Das et al. (2015) considered the thermocapillarity 

effect on hydromagnetic thin film flow over an unsteady stretching sheet and found that the fluid 

temperature, skin friction and rate of heat transfer at sheet, all are adversely affected by 

thermocapillarity.  



 

 

It is to be noted that, in all of the above investigations, the effect of viscous dissipation is not taken 

into account. The viscous dissipation is a phenomena of practical importance in many engineering 

devices. Although viscous dissipation effect is considered to be weak, but its effect becomes 

significantly important in surface tension driven flows e.g. tribology, in the instrumentation, food 

processing, lubrication, polymer manufacturing etc. Viscous dissipation changes the temperature 

distribution by playing a key role like an energy source which leads to affect heat transfer rate. 

Vajravelu and Hadjinicolaou (1993) analyzed heat transfer characteristics in the laminar boundary 

layer of a viscous and heat absorbing fluid over a stretching sheet taking viscous dissipation into 

account. Partha et al. (2005) studied the effect of viscous dissipation on the mixed convection flow 

with heat transfer from an exponentially stretching surface. Sanjayanand and Khan (2006) 

discussed heat and mass transfer in a viscoelastic boundary layer fluid flow over an exponentially 

stretching sheet taking viscous dissipation into account. Cortell (2008) investigated the effects of 

viscous dissipation and thermal radiation on the thermal boundary layer over a non-linearly 

stretching sheet. Aziz (2009) studied viscous dissipation effect on mixed convection flow of a 

micropolar fluid over an exponentially stretching sheet. Pavithra and Gireesha (2013) analyzed the 

effect of viscous dissipation on hydromagnetic fluid flow with heat transfer in a porous medium 

over an exponentially stretching sheet with fluid particle suspension.  

As per the authors’ concern, the surface tension driven magnetohydrodynamic flow of a Casson 

fluid thin film having variable thermal conductivity, past an unsteady stretching sheet, considering 

the viscous dissipation effect, in a non-Darcy porous medium, has not been considered yet. 

Although, the richness of ideas and phenomena discussed in the proposed study can be expected 

to lead to highly productive interactions across disciplines. 

Mathematical analysis of the Problem:  Consider the hydromagnetic flow of Casson fluid thin 

film through a non-Darcy porous medium, past an elastic sheet, which is being stretched unsteadily 

and emerging through a fine slit at the origin as depicted in Figure 1. The sheet is lying over x  

axis and y   axis is taken in a direction perpendicular from the sheet. The flow region is 

permeated by a uniform magnetic field 
0B , applied, in a transverse direction (i.e. parallel to y-

axis). Furthermore, the effect of viscous dissipation is also taken into consideration. It is presumed 

that the flow is prompted due to elongation of the sheet by imposing a force, applied at one of the 

edges of the sheet in such a way that the sheet velocity is time dependent and varies linearly with 

the distance. Further, due to the thinness of liquid layer, the effect of buoyancy is also ignored, but 

it is not so thin that intermolecular forces come into play. The film thickness is assumed to be ( )h t

. The sheet starts stretching with a velocity ( , ),U x t  given as: 
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where and c  are constants (positive), having dimension of 1time . It is to be observed that the 

sheet velocity given in (1) is valid only when 1t   unless 0.   The sheet temperature is 

supposed to vary with x in a fashion, such as:  
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where 
refT  is reference temperature, 

0T  is the temperature at the slit, d is an arbitrary constant, 

is kinematic coefficient of viscosity, r is space index and m is time index. 

For incompressible and isotropic Casson fluid, the rheological equation of state is given as: 
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where ije  is the (i, j)th component of the deformation rate, ij  is the (i, j)th component of the stress 

tensor ij ije e   is the product of deformation rate with itself, 
c  is the critical value of the   based 

 

Figure 1: Geometry of the Problem 

on the non-Newtonian model, 
B  is the plastic dynamic viscosity of non-Newtonian fluid and yP  

is the yield stress of the fluid. 

The variation in thermal conductivity and surface-tension with temperature are considered to be in 

the following form:  

0 0[1 ( )]sk k b T T                        (4) 



 

 

0 0[1 ( )]T T                      (5) 

where 0k  and 0  are thermal conductivity and surface tension of fluid at slip temperature 0.T  The 

constant   is positive for the fluids such as air and water and it is negative for fluids such as 

lubrication oil.. For most of the liquids, surface tension is a decreasing function of temperature i.e. 

  is positive for such fluids and b is a constant. 

The fluid thin film is considered as non-volatile, therefore the influence of latent heat due to 

evaporation is ignored. The equations governing for fluid velocity and temperature field of the thin 

film, following the above mentioned behavior, are given as: 
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where 2 /b c yP    is Casson parameter, , , , , , , , , andp bu v T k c K C   , are respectively, fluid 

velocity in x- direction, fluid velocity in y- direction, fluid temperature, electrical conductivity, 

variable surface tension, fluid density, variable thermal conductivity, specific heat at constant 

pressure, dynamic permeability of porous medium and quadratic drag coefficient.   

It is worthwhile to observe that while writing the governing equations (6) to (8), induced magnetic 

field is ignored under the consideration of small magnetic Reynolds number. Since we are dealing 

with flow of a thin film over a sheet and thickness of the film, which in this case is characteristic 

length, is small and fluid velocity u, which evolve from the elongation of the sheet, is also small, 

thus the consideration of small magnetic Reynolds number is justified. 

The conditions at the boundary are as following: 
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The Mathematical analysis of the flow of thin film can be made much simpler if we can convert 

the governing PDEs given by equations (6) to (8) along with the boundary conditions (9), (10) and 

(11) into ODEs. To do so, following similarity transformations are introduced: 
1/2

01/2

1/2

0

2
3/2 0

0

0 0

1
(1 ) , ( ), ( ),

1 (1 )

(1 ) ( ), ( ) .
2

ref

s

cc cx
t y u f v f

t t

T Tcx
T T T t

T T


   

   

    








 
     

   


   
       

                                                                        (12) 

These similarity transforms are valid only when 1/ t  . 

Making use of (12), equations (6), (7) and (8) get converted into following system of ordinary 

differential equations: 
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Transformed boundary conditions are obtained as:  
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Here   denotes the value of similarity transform   at the free surface. Thus the boundary condition 

(11) gives: 
1/2 1/2

0( / ) (1 ) ( )c t h t                   (18) 

Wall Velocity Gradient and Wall Temperature Gradient:   For engineering and practical purposes, 

we are concerned with the exploration of physical entities of the flow behavior and heat transfer 

attributes by investigating the non-dimensional skin friction coefficient and local Nusselt number. 

These dimensionless parameters are presented as: 
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The Numerical Implementation:  Differential equations (13) and (14), along with boundary 

conditions (15), (16) and (17) are solved numerically by shooting technique with 4th order Runge-

Kutta method. Differential equations (13) and (14) are converted into a set of 5 first order linear 

differential equations. For an initial guess of  , this set is solved, subject to conditions at the 

boundary (15) and (16) until the outer boundary condition (17) is satisfied. 

 

Validation of the Numerical Solution:  To judge the precision of numerical method, we have 

realized an assessment for the numerical values of skin friction coefficient (0) andf   with 

1 0 andcM E F K      , against S with those of Das et al. [16]. An excellent agreement is 

found between our result and that of Das et al. [16], which is shown in Table 1. This guarantees 

that our numerical scheme is in confidence and it can be used for further computation of results. 

 

Table 1: Comparison of values of and (0)f   for various values of S with published results for 

1 0cM E F K     and Pr 1,     

 Das et al.  [16] Present Study 

S   (0)f                 (0)f   

0.8 2.15199 2.680943 2.15198 2.68086 

1.0 1.543626 1.972377 1.54360 1.972301 

1.2 1.127780 1.444426 1.12780 1.443982 

1.4 0.821055 1.012784 0.821032 1.012689 

1.6 0.576173 0.642398 0.576170 0.642386 

 

Results and Discussion:  Extensive numerical computations are performed for velocity field and 

temperature distribution within the film boundary layer together with wall velocity gradient and 

wall temperature gradient, to get insight into the physics of the flow regime for several values of 

flow parameters which characterize the features of the flow. Numerical findings are well 

demonstrated in Figures 2 to 9 along with Table 2. The default values of pertinent flow parameters 

are taken as 0.2, 0.4,F Ec 
1Pr 1.3, 3, 1.2, 0.5, 0.5, and 0.5M S Ma K       , until 

otherwise specified particularly. 



 

 

Figures 2 to 4 portrait the behavior of fluid velocity f   under the influence of magnetic field 

parameter M, Casson parameter   and thermocapillarity parameter Ma , respectively. We observe 

from Figure 2 that an increase in M causes fluid velocity inside the thin film as well as the film 

thickness to decrease significantly. The reason behind such effect of magnetic field is that since 

the existence of magnetic field in an electrically conducting thin film induces a retarding body 

force, referred to as Lorentz Force, and this force acts in a direction perpendicular to both fields. 

Since M  suggests the ratio of hydromagnetic body force and viscous force, greater value of M 

indicates a stronger hydromagnetic body force which has a tendency to decelerate the fluid flow. 

Figure 3 is plotted to analyze the effect of Casson parameter   on fluid velocity and it is apparent 

from this figure that fluid velocity inside the thin film decreases on increasing Casson parameter

.  Since Casson parameter   is directly proportional to the plastic dynamic viscosity .  An 

increase in   means an increase in plastic dynamic viscosity ,  which means a greater 

resistance to the flow of thin film hence a downfall is observed in the fluid velocity on increasing 

the Casson parameter. Figures 4 elucidate that there is barely an effect of thermocapillarity 

parameter Ma  on fluid thin film velocity, near the stretching sheet. However, as we get closer to 

free surface, the velocity is observed to increase on increasing the thermocapillarity parameter Ma

.  

Figures 5 to 9 are plotted to analyze the behavior of fluid temperature   against , , , and .cM E S 

It is perceived from figure 5 and 6 that with an increase in and ,M  temperature of thin film 

increases throughout the film region. Since the action of Casson parameter and magnetic field 

parameter has led to the decrement in the velocity of the fluid in thin film region, therefore, extra 

work done in dragging the fluid against these two physical entities, dissipates in the form of energy 

and hence increased fluid temperature is observed in the thermal boundary layer. Figure 7 

elucidates that fluid temperature is getting decreased on increasing the Eckert number ,Ec which 

in fact, supports the physics. It is perceived from Figure 8 that an increase in the thermal 

conductivity parameter  causes an enhancement in the film temperature. Since an increase in 

thermal conductivity would obviously result in the enhancement of fluid temperature. Figure 9 

shows the effect of unsteadiness parameter S on the film temperature. One can observe from this 

figure that an increase in unsteadiness in the stretching results in the decreased fluid temperature 

inside the thin film and reduced film thickness. 

 



 

 

 
Fig. 2: Velocity Profile for M 

 
Fig. 3: Velocity Profile for .  

 
Fig. 4: Velocity Profile for Ma 

 
Fig. 5: Temperature Profile for .  

 
Fig. 6: Temperature Profile for M. 

 
Fig. 7: Temperature Profile for Ec  



 

 

 

                 
Fig. 8: Temperature Profile for .                                Fig. 9: Temperature Profile for S 

 

In order to analyze the behavior of physical quantities of interest viz. local skin friction co-efficient 

1/21
Re

2
x xCf  and local Nusselt number 1/2Rex xNu  , effects of pertinent flow parameters such as ,  

, , and ,cS M Ma E  on these two quantities are computed and are presented in Table 2. One can 

observe from Table 2 that skin friction co-efficient is getting enhanced on increasing either of 

Casson parameter, unsteadiness parameter, Magnetic field parameter and thermocapillarity 

number. On the other hand, local Nusselt number is getting enhanced on increasing only 

unsteadiness parameter and decreases on increasing either of Casson parameter, Magnetic field 

parameter, thermocapillarity number and Eckert number. 

Table 2: Skin friction 
xfC  (i.e. (0)f  ) coefficient and Nusselt number uN  (i.e. (0)  ) for various 

values of flow parameters 

 
  

 

S 

 

M 

 

Ma 

 

cE
 

 
(0)f   

 
(0)   

0.5 0.8 3 1 0.4    -1.2898    -0.4944 

1.0 0.8 3 1 0.4    -1.5850    -0.2649 

1.5 0.8 3 1 0.4    -1.7373    -0.1650 

0.5 0.8 3 1 0.4    -1.2898    -0.4944 

0.5 1.0 3 1 0.4    -1.3053    -0.6672 

0.5 1.2 3 1 0.4    -1.3202    -0.8195 

0.5 0.8 3 1 0.4    -1.2898    -0.4944 

0.5 0.8 5 1 0.4    -1.5287    -0.4185 

0.5 0.8 7 1 0.4    -1.7340    -0.3631 

0.5 0.8 3 1 0.4    -1.2898    -0.4944 

0.5 0.8 3 2 0.4    -1.2917    -0.2826 

0.5 0.8 3 3 0.4    -1.2932    -0.2803 

0.5 0.8 3 1 0.4    -1.2898    -0.4944 

0.5 0.8 3 1 0.6    -1.3160    -1.2339 

0.5 0.8 3 1 0.8    -1.3152    -1.5246 



 

 

Conclusions: 

A mathematical model is established for surface tension driven magnetohydrodynamic non-Darcy 

flow of an incompressible, electrically conducting and viscous thin fluid film past a horizontal 

unsteady stretching sheet with variable thermal conductivity, taking viscous dissipation effect into 

consideration. Noteworthy results are summarized as follows: 

 An intensification in magnetic field leads to a significant fall in fluid velocity and reduces 

the film thickness as well. A greater resistance to the flow is offered on increasing the 

plastic dynamic viscosity due to virtue of increasing Casson parameter. On the other hand, 

thermocapillarity tends to increase the film velocity in the region near the free surface. 

 As a result of increased resistance to the fluid movement due to increase in Casson and 

magnetic parameters, the fluid temperature is getting increased. A decrease in fluid 

temperature is also witnessed on increasing unsteadiness parameter. However, o increasing 

the thermal conductivity, temperature is observed to increase for the obvious reasons. 

 Coefficient of skin friction is getting boosted on increasing either of Casson parameter, 

unsteadiness parameter, Magnetic field parameter and thermocapillarity parameter. On the 

other hand, local Nusselt number is perceived to rise only on increasing unsteadiness 

parameters while the rest of the parameter, namely Casson parameter, Magnetic field 

parameter, thermocapillarity number and Eckert number have adverse effect on local 

Nusselt number. 
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